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Abstract 

Android is a widely used operating system, primarily found on mobile phones and tablets. Applications 
(commonly known as "apps") for Android can be easily installed from Google Play, third-party stores, or 
manually using Android Package Kit (APK) files. Due to its growing popularity, Android has attracted 
significant attention from malicious actors deploying various forms of malware. To address this challenge, 
artificial intelligence-based approaches are increasingly used to protect systems from cyber-attacks. This 
research paper focuses on the application of ChatGPT, a powerful large language model, in cybersecurity, 
specifically for malware detection. It evaluates ChatGPT's potential as an innovative tool in fighting cyber 
threats, exploring the process of fine-tuning ChatGPT, its performance and its limitations in malware 
detection tasks. The objective is to reduce the effort and time required to generate AI-based malware 
detection systems, simplifying their development process. This research shows how ChatGPT can be 
utilized to generate code for detecting malware in structured datasets with high accuracy. The focus is not 
on introducing any new algorithms but on allow individuals without programming expertise to create and 
apply these models effectively.  
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1. INTRODUCTION 
Android is a prevalent operating system employed on mobile phones and tablets. Applications (referred to 
as "apps") for Android can be conveniently installed from Google Play, third-party stores, or manually 
from Android Package Kit (APK) files. Given the increasing prevalence of Android usage, it has garnered 
considerable attention from malicious actors who deploy various forms of malware. Consequently, 
substantial efforts have been directed towards Android malware detection, employing diverse techniques 
encompassing static, dynamic, or hybrid methodologies. Static approaches hinge on static information such 
as permissions or signatures, while dynamic methods rely on data collected during the execution of the 
app. Hybrid techniques constitute a fusion of both static and dynamic strategies [1, 2, 3]. 

In contemporary times, Machine Learning (ML), particularly Deep Learning (DL) methods, have 
gained widespread adoption in malware detection. Various algorithms and multiple datasets are readily 
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accessible in the literature, yielding highly accurate prediction results. Nonetheless, the process of 
procuring new data and developing novel algorithms is time intensive. Furthermore, recent research has 
indicated that greater computational efficiency and accuracy can be achieved when distinct datasets and 
algorithms are fashioned for individual malware categories. However, it is important to underscore that 
the training of DL architectures to achieve optimality remains a time-consuming endeavour. 

This paper introduces a novel approach, leveraging Transfer Learning, rooted in 1-Dimensional deep 
Convolutional Neural Networks (CNN), to address the challenge of computational complexity in the 
detection of closely related Android malware categories, such as fake anti-malware, Trojans, malicious 
VPN clients, and others. The proposed methodology entails training a model on a dataset comprising 
malicious and benign antimalware apps [1], followed by the transfer of the model to analogous datasets 
containing malicious Trojans and benign apps [2], as well as datasets encompassing both malicious and 
benign VPN clients. The specifics of these datasets are indicated in the evaluation section. 
 
The key contributions of this work are: 
 

● To demonstrate how ChatGPT can be used to generate code for detecting malware in structured 
datasets with high accuracy. Although the algorithms themselves are not new, the focus is on 
enabling individuals without programming expertise to create and apply such models, while also 
helping experienced programmers save time by leveraging a large language model to generate 
code for these tasks. 

● Comprehensive evaluation of the proposed methodology, substantiating its practicality and 
effectiveness, with results demonstrating a high level of detection accuracy in comparison to 
algorithms developed by humans. 

 
The remainder of this paper is organised as follows: Section 2 presents an overview of related work, 
Section 3 outlines the problem statement, Section 4 describes the proposed methodology, Section 5 details 
the experimental evaluation process and reports the results, and Section 6 concludes the paper and 
discusses future research directions. 

2. RELATED WORK 

2.1. Static 
Static solutions are primarily geared towards the detection of malicious applications in Android without 
necessitating their execution on mobile devices. These solutions make use of static features for the purpose 
of malware detection. In static analysis, the features derived from the APK file are gathered prior to its 
deployment on the device. This approach to Android malware detection places a strong emphasis on 
resource conservation, as it circumvents the necessity of installing the application on the user's device. 
Several pertinent works based on static analysis are elucidated below.  
 DeepDetect [4] is a machine learning-based model that operates on static features, facilitating on-
device malware detection. DeepDetect exhibits effectiveness when paired with adept feature engineering, 
rendering it suitable for deployment on mobile devices. Another research endeavour postulates a Bayesian 
classification-driven system for the detection of Android malware, grounded in permission features and 
employing static analysis for the extraction of these permission features [5]. This is motivated by the 
pursuit of gauging the efficacy of static analysis in Android malware detection by focusing on permission-
based attributes. The research posits the application of machine learning in conjunction with diverse sets 
of classifiers to assess Android malware detection. In this context, the feature selection method is adopted 
to ascertain which attributes are most proficient in distinguishing malicious software [6]. The efficacy of 
supervised machine-learning algorithms with static analysis data, drawn from the Drebin dataset, has been 
explored [48] and a brief overview of related studies in this domain was presented in [7]. 
 Another study [8] proposes a novel Android malware detection system predicated on filter-based 
feature selection techniques. The methodology is rooted in machine learning and is based on static 
attributes extracted from application files, specifically permissions. To enhance the efficiency and 
execution speed of machine learning algorithms, dimension reduction is carried out by employing eight 
distinct feature selection methods. Four of these methods have been previously integrated into Android 
malware detection systems, while the remaining four have been adapted from research in text 
classification. In a parallel vein, an alternate machine learning-based malware detection system is 
presented in [9], aimed at distinguishing Android malware from benign applications. The feature selection 
stage of this malware detection system endeavours to eliminate redundant attributes using a linear 
regression-based feature selection approach. Consequently, this process reduces the feature vector's 
dimension, minimises training time, and permits the classification model to be utilised in real-time malware 



 

 

detection systems. In this context, research in [10] applies and evaluates machine learning approaches that 
are founded on static features for the identification of malware in the Android OS. Correlation-based 
feature selection techniques are employed to train each classifier on the training set through 
hyperparameter tuning, followed by an evaluation of their performance on an unseen test set. Additionally, 
in [11], 'Information Gain' is employed to rank permissions and intents with the objective of identifying 
the optimal set of permissions and intents to achieving high accuracy in Android malware detection. The 
study introduces a novel algorithm that combines machine learning algorithms, including Random Forest, 
SVM, and Naive Bayes, to ascertain the most suitable set. Furthermore, a lightweight Android malware 
detection system is proposed in [12], leveraging machine learning techniques that rely on fewer static 
attributes to differentiate between malicious and benign applications. The research adopts a feature 
engineering approach to streamline feature dimensions, employing a multi-level feature reduction and 
elimination process to establish a lightweight detection model. Subsequently, the research crafts a machine 
learning-based detection system using the refined feature set, outperforming models founded on the 
original feature set. 
 Another study introduces an effective framework grounded in the fusion of static attributes and 
machine learning classifiers to identify malware applications. Three categories of static attributes are 
extracted, namely API calls, permissions, and intents. API calls are extracted from Classes.dex, 
permissions from AndroidManifest.xml, and intents from the same manifest file. These features are 
harnessed for the training and testing of application classification [13]. A separate research endeavour 
seeks to expand the repertoire of malware detection methodologies by unveiling a static-based 
classification approach for malware detection that relies on Android permissions and API calls. This 
approach is underpinned by three prominent Machine Learning algorithms, namely Support Vector 
Machines (SVM), K-nearest neighbours (KNN), and Naive Bayes (NB), with the aim of achieving robust 
malware detection rates and contributing to efforts and studies aimed at safeguarding mobile information 
development [14]. 
 In this study, a model is devised, drawing from a combination of four static features: permissions, 
API calls, monitoring system events, and permission rates. The dataset encompasses 2,820 samples of both 
malware and benign applications. This research introduces a pioneering Recurrent Neural Network (RNN) 
architecture that surpasses traditional machine learning algorithms in the context of malware detection 
[15]. In a related work, an innovative approach for detecting malware in Android applications is 
introduced, making use of a Gated Recurrent Unit (GRU), a subtype of Recurrent Neural Network (RNN). 
The research extracts two static attributes from Android applications, namely Application Programming 
Interface (API) calls and Permissions [16]. Consequently, this research aspires to develop a contemporary, 
effective, and dependable malware detection system employing deep learning algorithms. The study 
evaluates RNN-based LSTM, BiLSTM, and GRU algorithms across 8,115 static attributes in the proposed 
system for malware detection [17]. 
 In the domain of deep learning-based static detection, some researchers directly extract bytecode 
from Android APK files, converting it into a two-dimensional bytecode matrix. Subsequently, a detection 
model is trained and applied for malware classification, harnessing the deep learning algorithm, 
Convolutional Neural Network (CNN). CNN autonomously learns the characteristics of bytecode files, 
enabling the identification of malware [18]. Furthermore, as an alternative solution for malware detection 
founded on deep learning, a novel anti-malware system is proposed, utilising customised deep learning 
models that are sufficiently deep, characterised as 'End to End deep learning architectures for detecting 
and attributing Android malware via opcodes extracted from application bytecode' [19]. In yet another 
research effort, a method is suggested that employs static analysis in conjunction with the natural language 
processing (NLP) technique of document embeddings to generate feature vectors representing information 
within Android manifests and Dalvik executables contained in an APK. These embeddings are 
subsequently deployed to train binary classifiers capable of distinguishing between benign and malicious 
Android applications [20]. Lastly, this research introduces a static Android app analysis method grounded 
in an app similarity graph (ASG). In contrast to expert-based attributes, the study posits that the core of 
app behaviour classification resides in their shared, reusable building blocks, such as functions [21]. 

2.2. Dynamic 
Static solutions do not execute apps; hence, such solutions may not detect apps that download malicious 
components at update time. Hence, dynamic solutions came into existence. In this approach, the features 
of an APK are collected by running them in a sandbox environment. This is a more resource-consuming 
approach than static malware detection. Summaries of some papers based on dynamic analysis are given 
below.  
 EnDroid [22] introduces a powerful dynamic analysis framework for implementing highly precise 
malware detection based on multiple types of dynamic behaviour features. These features cover system-
level behaviour tracing as well as common application-level malicious behaviours such as data theft, 



 

 

premium service subscription, and malicious service communication. EnDroid also employs a feature 
selection algorithm to eliminate noisy or irrelevant features and extracts critical behaviour features via a 
runtime monitor and uses an ensemble learning algorithm to distinguish between malicious and benign 
applications. In another study, they use malware and the benign app it infects to test the effectiveness of 
mining sandboxes in detecting malicious behaviour. They create a sandbox based on sensitive APIs used 
by the benign app and test it to see if it can detect malicious behaviour in the corresponding malware [23]. 
They developed a system that detects the behaviours of Android applications and identifies known and 
unknown malware. By loading a kernel module, their system can monitor specific applications. Following 
the detection process, the associated documents are uploaded to the server, and the dynamic behaviours 
are rebuilt [24]. DroidCat [25] is a novel dynamic app classification technique to supplement existing 
approaches. DroidCat achieves superior robustness over static and dynamic approaches that rely on system 
calls by utilising a diverse set of dynamic features based on method calls and inter-component 
communication (ICC) Intents, but without involving permission, app resources, or system calls while fully 
handling reflection. The characteristics were derived from a study of benign versus malicious apps' 
behavioural characterisation.  
  De-LADY [26] (Deep Learning-based Android Malware Detection Using Dynamic Features) is 
proposed as an obfuscation-resistant approach. It makes use of behavioural characteristics derived from 
the dynamic analysis of an application running in an emulated environment. A similar paper proposes DL-
Droid [27], a deep learning system for detecting malicious Android applications using dynamic analysis 
and stateful input generation. EntropLyzer [28] proposes an entropy-based behavioural analysis technique, 
as a technique for classifying the behaviour of 12 prominent Android malware categories and 147 malware 
families. To classify and characterise Android malware, this study employs six classes of dynamic 
characteristics: memory, API, network, logcat, battery, and process. PICAndro [29] uses packet inspection 
of captured network traffic to improve the accuracy and depth of malware detection and categorisation. 
The network interactions identified are represented as images that are fed into the CNN engine. 
 In another work, they use pseudo-label, a semi-supervised learning technique for deep neural 
networks that they train with a set of labelled and unlabelled instances. They employ dynamic analysis to 
create dynamic behaviour profiles in the form of feature vectors. They evaluate and compare their proposed 
model to Label Propagation (LP), a well-known semi-supervised machine learning technique, and other 
common machine learning algorithms [30]. Finally, the impact of all dynamic analysis categories and 
features on Android malware detection is examined using various filter and wrapper methods [31]. 

2.3. Hybrid 

According to [32], the use of a single approach, whether dynamic or static, falls short in accurately 
classifying malware due to challenges posed by obfuscation and execution stalling. Consequently, 
researchers have started to embrace hybrid analysis techniques. This section provides an overview of 
hybrid malware analysis which revolves around the detection and classification of Android malware. 
 The MFF-AMD mechanism [33] aims to enhance the accuracy of Android malware detection 
using machine learning techniques. This system begins by extracting diverse features through a 
combination of static and dynamic analyses, resulting in a comprehensive multiscale feature set. The Relief 
algorithm is introduced to fuse these features, and four weight distribution algorithms are designed to 
merge base classifiers, thereby achieving superior classification performance. MFF-AMD also defines a 
threshold that facilitates the selection of either static or hybrid analysis for malware samples. Subsequently, 
AmandaSystem [34] presents a novel bottom-up static analysis methodology for the creation of 
PerApTool, an efficient and comprehensive tool dedicated to mapping relationships between Android 
permissions and API calls. Sttatic and dynamic analysis of Android malware is explored, comparing the 
outcomes of pattern identification in datasets and the utilisation of a range of classifiers to identify the 
most effective approach for malware analysis in [35]. 
 In another study, benign and malware data from various sources are consolidated, resulting in an 
expanded dataset comprising 489 static and dynamic features. The primary outcome is a novel, labelled, 
and hybrid-featured Android dataset equipped with timestamps for each data sample, encompassing the 
entirety of Android history from 2008 to 2020, while taking into account distinct sources of dynamic data 
[36]. Another study introduces an effective image-based Android malware detection system, extracting six 
different features from Android applications using both static and dynamic analyses. These features include 
intent, opcode, and permission from static analysis, as well as unigram, bigram, and trigram from the 
system call log derived from dynamic analysis [37]. A comprehensive benchmarking exercise is 
conducted, comparing the detection performance of six distinct timestamping approaches for static and 
dynamic feature sets in [38]. 
 'Chimera,' a novel multimodal deep learning (DL) Android malware detection approach that 
amalgamates both manual and automatic feature engineering is proposed, with the amalgamation 



 

 

leveraging DL architectures such as Convolutional Neural Networks (CNN), Deep Neural Networks 
(DNN), and Transformer Networks (TN) for feature learning from raw data (Dalvik Executable (DEX) 
grayscale images), static analysis data (Android Intents & Permissions), and dynamic analysis data (system 
call sequences), respectively [39]. In a different study, a novel Tree Augmented Naive Bayes (TAN)-based 
hybrid malware detection mechanism is suggested, capitalising on conditional dependencies between 
pertinent static and dynamic features, encompassing API calls, permissions, and system calls required for 
an application's functionality. This approach involves training three regularised logistic regression 
classifiers, each aligning with an application's API calls, permissions, and system calls. The output 
relationships of these classifiers are modelled using a TAN to determine the malignancy of the application 
[40]. Another paper introduces a hybrid analysis approach for detecting Android malware and categorising 
malware families, with partial optimisation for multi-feature data. This employs permissions and intent as 
static features in the context of static analysis. Dynamic analysis is focused on sessions, maintaining all 
protocol layers, and network traffic is harnessed. The Res7 LSTM model is subsequently utilised to further 
classify malicious and partially benign samples detected during static analysis [41]. Similarly, CoDroid 
[42] is a sequence-based hybrid Android malware detection approach that utilises static opcode and 
dynamic system call sequences. In a natural language processing (NLP) context, a sequence is treated as a 
sentence, and a CNN-BiLSTM-Attention classifier is constructed from Convolutional Neural Networks 
(CNNs) and Bidirectional Long Short-Term Memory (BiLSTM) with an attention language model. 
 Another recent paper [43] suggests a system for classifying Android applications that combines 
static permissions and dynamic packet analysis. The system gathers static information about Android 
applications through static analysis, employing machine learning to classify them as benign or malicious, 
while filtering out benign applications to minimise dynamic data collection time. The malware's network 
traffic is then employed to extract multiple types of features in the dynamic analysis phase, with machine 
learning facilitating malware family classification. Moreover, this paper employs a hybrid approach to 
malware detection based on static, dynamic, and intrinsic features, utilising k-nearest neighbours (k-NN) 
and logistic regression machine learning algorithms. The intrinsic feature contribution is also evaluated, 
and a linear discriminant analysis technique is deployed to assess its impact on the detection rate [44]. 
Furthermore, the authors propose a malware detection algorithm for Android that relies on a hybrid deep 
learning model, combining a deep belief network (DBN) and a gate recurrent unit (GRU). This research 
begins by examining Android malware, extracting both static and dynamic behavioural features that 
possess robust anti-obfuscation capabilities. Subsequently, a hybrid deep-learning model for Android 
malware detection is created [45]. Two datasets for binary and multiclass (family) classification are 
generated, harnessing a robust set of features extracted from static and dynamic malware analysis. And 
various machine-learning algorithms deployed to detect and classify malware using the features extracted 
from static and dynamic malware analysis in [46]. Yet, another study proposes an efficient and accurate 
machine learning and deep learning model to tackle this challenge. For static analysis, the researchers draw 
upon the malware genome dataset and the Drebin project [47], while the CICMalDroid2020 dataset [48] 
serves as the source of dynamic analysis data. Hybrid analysis is then performed, combining features 
extracted from these two datasets [49]. 

In the literature and in the current paper, it is shown that code generated from ChatGPT doesn’t 
always work. One publication [52] looking at correctness of synthetic code found several weaknesses and 
limited evaluation power of the original test inputs from HumanEval [53]. They stated that they have found 
a way to improve on several inconsistencies, highlighting the improvements’ ability to identify significant 
amounts of previously undetected code errors. Other publications [54, 55] find that ChatGPT has several 
flaws and security issues with the code it generates. Of 21 reported use-cases only 5 appeared initially 
secure, with a further 7 made more secure when explicitly told to do so, and how, by the user. Other 
publications [56] also found that the synthetic code generated, appeared to be vulnerable in more than a 
third of their use-cases with another at only around 12% [57]. 

The aim of this paper is to show that ChatGPT can be utilized to generate code that can be applied 
on a structured dataset to detect malware with very high accuracy. While the algorithms are not novel, the 
goal is for people who do not have a programming background to be able to generate and apply such 
models and for experienced programmers to save time by asking a large language model to write code for 
such problems. In the context of malware detection, we have used ChatGPT to generate machine learning 
algorithms that can be applied to a dataset with features and the experiments do not involve any 
dynamically executed code in a controlled environment or otherwise. 
 

3. PROBLEM STATEMENT 
While LLM-based code generation provides promising advantages in accelerating productivity and 
automating certain tasks for business, the synthetic code generated by modern LLM’s is facing some 



 

 

criticism. In this paper we are interested in systematically evaluating the code generated by ChatGPT [51] 
for correctness, compatibility and usability in malware detection using machine learning. The generated 
models from ChatGPT are not fundamentally different from traditional machine learning models. The key 
distinction here is not in the models themselves but in the process of how they were created. ChatGPT was 
used to automate the code generation process, which provides a new approach to developing these 
algorithms and novelty lies in the code generation process facilitated by ChatGPT. 

The paper aims to demonstrate that while ChatGPT can automate the initial code generation, the 
resulting model still requires training and validation to function effectively.	ChatGPT’s role is limited to 
generating the initial code, with the actual model training being a subsequent and essential step. The 
process of using ChatGPT to generate code does differ from manually developing a model. While ChatGPT 
can quickly generate code, ensuring the accuracy and performance of this code still requires further steps, 
including validation, debugging, and optimization. This process can be more efficient than manual coding, 
but it also comes with its own challenges, such as verifying the correctness of the generated code. 

4. PROPOSED METHODOLOGY 
 
While the features and models used in this study are commonly known in the machine learning community, 
the innovative aspect of this research lies in the use of ChatGPT to automate the code generation process. 
This approach can significantly reduce the time and effort required to develop models, particularly in the 
context of Android malware detection. The advantage of using ChatGPT to generate model code lies in its 
ability to produce customized code tailored to specific datasets and needs. Unlike open-source libraries, 
which may require significant adaptation to fit specific requirements, ChatGPT can generate code that is 
more directly aligned with the task at hand. This approach can save time and reduce the likelihood of 
introducing errors during the customization process.  

Moreover, because of recent publications showing that generated code using ChatGPT doesn’t 
always work, we began to question how ChatGPT would fare in the domain of machine learning. We 
devised a series of prompts that would question ChatGPT’s ability to discuss and build ML models and 
architectures. We proposed a total 63 prompts ranging in topic and complexity from simple queries and 
common tasks to more complex challenges, all within the domain of machine learning. These prompts can 
be found in Appendix A. From this we examined the code, ran it and evaluated its outputs, where 
applicable. To evaluate the effectiveness of ChatGPT’s synthetic code, we created three distinct 
classifications to which all tasks in question could be classified, as discussed in Table 1. 
 
Table 1: The classifications and descriptions for the code prompted from ChatGPT 

Classification Description 

Green 
All code under green classification compiles and runs as expected. To achieve 
this classification the code must not be altered, added too, or changed in anyway 
from how ChatGPT originally provided it 

Yellow 

All code under yellow classification satisfies at least one of the following: 
1. Code does not compile or run without minor modification, addition or 

change to some degree from how ChatGPT originally provided it.  
2. Code will compile or run but not without warnings or errors  
3. Code will not compile or run due to deprecated code 
4. Code will compile or run but uses deprecated code. 

 
Deprecated code: using an older version of an API, using a dataset that is 
unavailable at the time of testing or using deprecated names for parameters, 
settings and other such matters. 
 
Minor modifications include: no dataset (as a direct result of the prompt), code 
snippets that require more code to run due to not prompting for a whole model 
e.g. a snippet depicting a new evaluation metric, that isn't attached to a ML 
model, so a ML model must be provided. 

Red All code under red classification does not compile or run as expected.  
 



 

 

To achieve this classification instead of yellow classification means the code has 
either significant errors, such as calling undefined variables, GPT was unable to 
provide code when prompted, code doesn’t run due to all errors that result in it 
not compiling e.g. calling an index out of range of an array, attempting to use an 
API which hasn’t previously been called and defined, passing more or less 
parameters into functions than what is required etc. 

To put this into layman's terms, Green means the code runs first time when copied and pasted into an IDE. 
Yellow means that there is some error with the code that may be a result of the period ChatGPT was trained 
and as such is using older libraries etc, or the prompt could have been more explicit in the case of not 
attaching the snippet to a larger model for context. Red means the code has some major problems that 
don’t satisfy the yellow requirements.  
 Our findings from these prompts concluded that 58.26% were categorised in green, 22.41% in 
yellow and 18.97% in red. Thus, we may state that the code ChatGPT provided us only worked 58% of 
the time using the raw, unadulterated original code that it generated. For the purposes of this paper, we 
took these findings and decided that we should apply ChatGPT’s synthetic code to an area we know it has 
displayed the ability to meet the green category and as such, compiles. Our last few prompts depict 
applications of classifiers to a malware dataset. You may find further discussion of the classifiers in Section 
4.1. From this, we may test and critically evaluate the synthetic code provided by ChatGPT against our 
own unique modifications, as discussed in the following sections. 
 
Datasets 
In this study, we are using a balanced dataset called spy.csv. The dataset was built for the purpose of 
identifying spyware on the Android operating system. It is a subset of a pre-existing one, called CIC-AND-
MAL 2020 [60, 61]. To create the dataset, we asked ChatGPT to write Python code to select random 
spyware and random benign apps to create a balanced dataset. This code worked as expected, and a new 
spy.csv dataset was developed. The dataset contains 10,021 spyware and 10,021 benign Android apps with 
9,503 features.  
 Each feature represents a specific permission or characteristic of the app, given a binary value: 1 
if the app requests the permission, and 0 if it does not. This binary representation allows for efficient 
processing and analysis of the dataset. A snapshot of the dataset’s attributes is presented in Table 2. The 
balanced nature of the dataset ensures that machine learning models trained on it are not biased towards 
benign or malicious apps, thus providing a robust foundation for developing effective spyware detection 
mechanisms. The comprehensive feature set captures a wide range of app behaviours and permissions, 
crucial for accurate malware detection. However, it should be noted that the original dataset doesn’t 
provide any details about the attributes, and we refer to them in Table 2 as characteristics. 
 
Table 2: The dataset attributes 

Heading Characteristic 1 Characteristic 2 … label 
Value Binary value Binary value Binary value Binary value 

 
4.1 Generated Classifiers 
To begin with, we require both the synthetic models created by ChatGPT and the modified versions of 
these models that we have created. This section will cover which models are used, how we acquired them, 
and how they were built. For convenience, we restrict to use of the following models: CNN, MLP, Decision 
Tree, Random Forest, KNN and SVM. We chose to limit our selection of algorithms due to time constraints 
on the project. As such, a handful of random but common algorithms were chosen. To acquire our models 
from ChatGPT we formatted a prompt which, by design, would only have one discernible difference: the 
name of the model. A template of the prompt is as follows: 

Implement a <model name> model for malware classification. The dataset is called Spy.csv and it has 
9503 columns in total where the last one is the label. Skip the first row. 

After obtaining the code that we require from ChatGPT, there were some minor modifications required. 
Firstly, in the process of reading the dataset, we removed the variable that held the file path and altered the 
code to be cleaner, as shown in Figure 1. 
 

 



 

 

Figure 1: A cleaner reading of the dataset, having removed the unnecessary variable holding the file 
paths value. 

 
Secondly, we altered the scoring metrics and visual output to better represent the models’ performance, 
for the purpose of comparing the findings against our own modifications. Ergo for the purpose of a fair 
representation of ChatGPT’s generated models, none of these modifications altered the models’ 
performance, hyperparameters or settings of any kind. The following sections will now be split into two 
parts. We will first discuss in detail, the models ChatGPT generated. We will then discuss our own 
modified models in detail, in instances where our models differ from that of the ChatGPT generated models 
only, to reduce repetition. 

4.1.1 Convolutional Neural Network 
Previous works [1, 2, 3], including that discussed in Sections 1 and 2, have demonstrated that machine 
learning models, specifically neural networks, work extremely well for our problem task. In this paper, we 
only explore the use of these methods in a supervised learning classification context. The first model we 
will look at is the Convolutional Neural Network (CNN). The architecture of the ChatGPT generated CNN 
is shown in Figure 2.  

CNNs are like a standard neural network, consisting of neurons that have learnable weights and 
biases. Every neuron in the network receives some input to which it performs a dot product and can 
optionally follow that up with a non-linearity. Likewise, they still encompass a score function, loss function 
and many other similar attributes that one may associate with neural networks. The main difference is that 
the CNN architecture can make the presumption that the inputs are images. This is very explicit and allows 
for specific properties we may want to be encoded into said architectures. The by-product of this, is that it 
allows for a greater efficiency in the forward function, and so fewer parameters are required. There are a 
few main components required in the building of this model. These are: the convolutional layer, the pooling 
layer and the fully connected layer. We will begin with the first layer, the convolutional layer. 

 

 
Figure 2: The CNN model ChatGPT generated for us using the prompt format discussed. 

 
The convolutional layer is the key building block of any CNN. This layer performs a dot product between 
two matrices (W and X) as shown in Equation (1); one of these matrices refers to the restricted part of the 
receptive field, while the other is the kernel which is a set of learnable parameters. We can calculate the 
spatial size of the volume of the output (𝑊!"#) as a function. If we declare the input volume size as W, the 
convolution layers' neurons' receptive field size as F, the stride as S, and the degree of padding as P, then 
we may calculate the number of neurons that will fit, as seen in Equation (2). 
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Looking more closely at the convolutional layer, let the output be denoted by y, the length of the input to 
the convolutional layer of n be denoted by x, the previously mentioned kernel k and the number of strides 
by s, which may succeed each convolution. We obtain the formulation in Equation (3). 
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Following this, the convolutional layer uses an activation function, which is taken to be the rectified linear 
unit (ReLU), as shown in Figure 3. The purpose of this is to introduce non-linearities to the CNN, as we 
see in the formulation in Equation (4). ChatGPT chose to use ReLU as opposed to another metric. The 
reasoning for this is unknown. 

 
Figure 3: The ReLU activation function 

 

𝑦(𝑥) = 𝑚𝑎𝑥(0, 𝑥)	 (4) 

Next, we have the pooling layer. In our GPT generated CNN, it provided a size of two. Pooling is required 
typically in the aid of overfitting. It consists of reducing the dimensionality of the mapping while giving 
prominence to certain features. This is typically applied to the output of the convolutional layer. In this 
instance max pooling is used, wherein the max value is selected of a window size W, which is slid over 
the input using stride size S after each pooling execution. After this, we may find that the output has the 
predisposition attributed to the layer's depth, of being greater than one. The subsequent flatten layer 
rectifies this, concatenating the output into a flat-like structure, which can then be distributed as input into 
a multi-layer perceptron (MLP). This is indicated in Equation (5), where 𝐹!"# is the function output, the 
function name f followed by with the function inputs (x and w), biases b, and while the Greek letter sigma 
represents the sum of the inputs. 

𝐹!"# = 𝑓(𝑥&, 𝑤+&) = 𝑏 +)𝑥&𝑤+&

	

+

	 (5) 

Now considering we are relating to a classification problem, there are numerous ways in which we may 
express the output. In the instance of this model, it is via one-hot encoding. This signifies that each element 
of the output vector may only obtain a value of one or zero. This is conjoined with the sigmoid function. 
The sigmoid function, as shown in Equation (6), is a non-linear operation that ensures the real-valued 
output is in the range between 0 and 1.  

𝜎(𝑛𝑒𝑡) =
1

1 + 𝑒-&.#	
(6) 

4.1.2 Multilayer Perceptron 
The second model we consider is the Multilayer Perceptron (MLP) model. The architecture of the GPT 
generated MLP is shown in Figure 4. MLP is a supervised learning algorithm often used throughout 
machine learning and has three types of layers: the input and output layers, and the hidden layers.  



 

 

 
Figure 4: The ChatGPT generated MLP model architecture 

 
MLP’s consist of neurons (perceptron’s) that have learnable weights and biases. Every neuron in the 
network receives some input to which it performs a dot product and can optionally follow that up with a 
non-linearity. They encompass a score function, loss function and all the common attributes you may 
associate with other neural network architectures. We consider the first layer of the GPT generated MLP, 
the input layer. An example of what this may look like is shown in Figure 5. 

 
Figure 5: A One Hidden Layer MLP model [58] 

 
The input layer consists of a predetermined number of neurons that represent the input features. As we 
move from layer to layer, each neuron transforms the values provided by the previous layer with a weighted 
linear summation, followed by an activation function, as shown in Equation (7), where w is the weight, 
and x is the feature. 

𝑤$𝑥$ +𝑤%𝑥%+. . . +𝑤+𝑥+	 (7) 

 
The final layer is the output layer, which upon receiving the values from the previous hidden layer, 
transforms them into an output. In between our layers, we use dropout regularisation. Dropout is a simple 
technique for reducing overfitting. Dropout refers to randomly selecting neurons to be essentially ignored 
during the training phase. The effect of this is that the model becomes less sensitive to the individual 
weights of the neurons inside it, thus increasing its generalisation ability.  

4.1.3 Decision Tree 
The third model we consider is the Decision Tree (DT) model. We can see the architecture of the GPT 
generated DT as having no parameters or settings defined, other than the random state being set at 42. 
Decision trees are a supervised learning method quite common in ML classification problems. They can 



 

 

be seen as a decision support tool that has a tree-like structure, as shown in Figure 6. This informs decisions 
and their possible consequences. They work by making these decisions using something called entropy, as 
seen in Equation (8), where S is a subset of the training, +p the probability of positive -p and negative 
classes, respectively. 

 
 

Figure 6: A decision tree trained on the iris dataset [59] 
 

𝐸(𝑆) = 	−𝑝 + 𝑙𝑜𝑔2(𝑝 + ) − 𝑝 − 𝑙𝑜𝑔2(𝑝 − )	 (8) 

 
Entropy allows the impurity of a node to be measured, where impurity refers to the randomness of the data 
provided. Therefore, in the building of the tree, we may measure the impurity of a given node in the tree, 
and we can choose those at 100% impurity to be the leaf nodes. We can also consider information gain 
(IG), when considering what node plays what role.  IG is a measurement on the reduction of uncertainty, 
provided by some features. In the context of deciding whether a node shall be assigned to be a standard 
node or a root node, we can calculate its IG, as shown in Equation (9), where E is the entropy, A is the full 
dataset and X is the feature. 

𝐼𝐺 = 𝐸(𝐴) − 𝐸(𝐴 ∨ 𝑋)	 (9) 

4.1.4 Random Forest 
The fourth model we consider is the Random Forest (RF) model. The architecture of the GPT generated 
RF is akin to the decision tree, except for the number of estimators parameters is set to 100.  

A RF can be seen as an ensemble of decision trees. It is a meta-estimator that fits a predetermined 
number of trees over varying samples of a given dataset. The benefit of this over a single DT is that it 
implements a control of averaging over the trees, thus reducing overfitting and improving accuracy. A key 
difference is the handling of feature selection. Whereas a DT performs feature selection within a single 
tree, an RF will average this out across all the DTs within the forest. Feature selection is based on feature 
importance, where we consider a set of n features 𝑓$, 𝑓%…𝑓& with a Gini index GI and we denote the 
importance of the variable by Vim. Then we can state the average change in the impurity of node splitting 
of the f feature across all decisions is 𝑉𝑖𝑚/

(1'&') , where the formula for the Gini index GI is shown in 
Equation (10), with c being the number of categories, and p the proportion of c categories in n nodes. 
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3.1.5 K-Nearest Neighbour 
The next model we consider is the K-Nearest Neighbour (KNN) model. We can find the architecture of 
the GPT generated KNN as having no parameters or settings defined, other than setting the number of 
neighbours to be 3. KNN is a simplistic model which is common in machine learning. Essentially it builds 
on the idea that data points that share some similarity will have similar data values or labels. It works by 
initialising K in a given number of neighbours, then for each example in the data it will calculate the 
distance between the queried example, and the current example at hand. This can be seen in Equations (11) 
and (12), which indicate the Euclidean and Manhattan distances respectively. Next, the distance and index 
are recorded in a collection which is then sorted into ascending order, using the distance value. The first k 
entries are then selected, and the labels are returned. The most common class among these labels can be 
seen as the predicted label. 
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4.1.6 Support Vector Machine 
The next model we consider is the Support Vector Machine (SVM) model. The architecture of the GPT 
generated SVM has no parameters or settings defined, other than setting the kernel type to 'linear'. SVM is 
a simplistic model quite common in machine learning. Essentially it builds on the idea that data points can 
be separated by a hyperplane. It works by initialising the kernel function, and then for each example in the 
data, it will find the optimal hyperplane that maximises the margin between different classes. This can be 
seen in Equations (13) and (14), which depict the linear and polynomial kernels respectively. Next, the 
support vectors are recorded in a collection which is used to form the decision boundary. The classification 
decision for any queried example is based on which side of the hyperplane it falls. The side determines the 
predicted label. 

𝑓(𝑥) = 𝑤 ⋅ 𝑥 + 𝑏	 (13) 

𝐾?𝑥' , 𝑥8A = ?𝑥' ⋅ 𝑥8 + 𝑐A
9 	 (14) 

4.2 Phase 1 Modifications 
Our first set of changes to the models GPT generated were minor modifications to bring the models up to 
a baseline that would set the foundations for more substantial changes later. Namely, all models underwent 
the following changes, as shown in Table 3. 
 
Table 3: The phase one modifications with accompanying description 

Modification Description 

Reading the dataset 

All models had the format of reading the dataset altered, to properly reflect the 
parameters of the dataset for clarity. Please see code snippets below: 
Original: 
x = df.iloc[:, :-1].values 
y = df.iloc[:, -1].values 
Phase 1: 
x = dataset[:, 0:9503] 
y = dataset[:, 9503] 



 

 

Cross-field 
validation 

All models, where applicable, had cross-field validation applied. This took 
different formats from scikit-learn’s cross-val function to its stratified k-fold 
respectively. For the purposes of this project, all models were initialised to 10-
folds. 

Random State 

ChatGPT states that a random state value of 42 is common practice in machine 
learning for the purposes of reproducibility. For the purposes of this stage of 
modifications this parameter was removed entirely, so all models revert to their 
respective defaults for this parameter. The purposes of this exclusion were that it 
was seemingly a pointless addition at this stage of testing. Considerations may be 
made in Phase 2, as to whether this shall be initialised in our experimental 
evaluation. 

 
The purpose of Phase 1 is to implement simple changes to alter the original models into a cleaner and more 
appropriate state for further customisations. Because of these minor alterations, we could observe any 
changes in the original models’ performances without making sizable changes to parameters or model 
structures. Phase 2, in which we explore the best model architectures and parameters is discussed in the 
next sub-section.  
 
4.3 Phase 2 Modifications 
The second phase of our modifications looked at more substantial changes to each of the models. All 
models were tuned and modified using scikit-Learn’s grid search and the Keras tuner respectively. All 
modifications were built on top of what was discussed in Phase 1. A description of the architectures and 
changes is discussed in the following sub-section. 
 
4.3.1 Convolutional Neural Network 
Using the prior discussed dataset, the CNN underwent some significant changes, notably its 
hyperparameters, as shown in Figure 7. 
 

 
Figure 7: The Phase 2 CNN model architecture 

 
As we can see, the filter, kernel and activation function, taken to be the tanh function shown in Equation 
(15), have all changed in the convolutional layer and respectively for the other layer’s parameters. Other 
key differences include the use of bias in the convolutional layer that was set to false, and the learning rate 
altered to 0.006784, all of which were found to be most optimal using the Keras tuner. The epochs were 
also tuned the same way against the learning rate to determine after how many epochs the model would 
become saturated. This is shown in Figure 8. 
 



 

 

Figure 8: Epochs vs Learning Rate for the CNN model 

 

𝑓(𝑥) = 𝑡𝑎𝑛ℎ(𝑥) =
2

1 + 𝑒-%: − 1	
(15) 

 
4.3.2 Multilayer Perceptron 
The MLP model also underwent modifications as shown in Figure 9. 

 
Figure 9: The Phase 2 MLP model architecture 

Notable changes included the addition of a flatten layer amongst the various parameters, and the setting of 
the learning rate to 0.00080391, which was found to be most optimal using the Keras tuner. 
 
4.3.3 Decision Tree and Random Forest 
The DT and RF models underwent minor modifications. Due to our experimental evaluation, there was 
little room for improvement in the contexts of accuracy, as further discussed in Section 5. However, grid 
search enables us to fill in some of the parameters, notably the criterion set as Gini and the max depth of 4 
for the DT and criterion set as entropy, max depth of nineteen and the number of estimators as 15 for the 



 

 

RF. 
 
4.3.5 K-Nearest Neighbour 
The k-nearest neighbour classifier also sat in a similar situation as the DT and RF classifiers. Using grid 
search, the following parameters were obtained: number of neighbours was set to 1, and the weights 
assigned as uniform and the metric as Manhattan. 
 
4.3.6 Support Vector Machine 
The SVM classifier underwent minor modifications. Due to our experimental evaluation, there was little 
room for improvement in the contexts of accuracy, as further discussed in Section 5. 
 

5. EXPERIMENTAL EVALUATION 

In our experimentation we used the python programming language exclusively, along with the machine 
learning libraries Keras, Keras tuner, AutoKeras and Scikit-learn. All experiments were executed on an 
Intel® Core™ i7-9750H CPU @ 2.60GHz × 12 using 16GB of DDR4 memory on the Linux Ubuntu 
22.04.3 LTS OS. Reruns and some tests were performed on an 13th Gen Intel® Core™ i9 24 Core 
Processor 13900HX (5.4GHz Turbo) using 32GB Corsair 4800MHz SODIMM DDR5 memory as well as 
CUDA GPU acceleration using NVIDIA® GeForce® RTX 4060 - 8.0GB GDDR6 Video RAM - 
DirectX® 12.1 on the Linux Ubuntu 22.04.4 LTS OS. As previously discussed, all experiments used 10-
fold cross validation, where validation referred to a binary type of classification. The metrics used to 
critically evaluate our models were accuracy, precision, recall and F1-Score, shown in Equations (16) -
(19), respectively. The contexts of the equations all relate to true positive (TP), true negative (TN), false 
positive (FP) and false negative (FN).  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁	
(16) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃	
(17) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁	
(18) 

𝐹1𝑆𝑐𝑜𝑟𝑒 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 	

(19) 

 
We conducted ten tests to evaluate the performance of our models before implementing any changes. 
Running multiple tests is crucial in ensuring the reliability of the results. It helps to account for variability 
and anomalies inherent in the data and model training processes. By averaging the outcomes across several 
tests, we can obtain a more accurate and robust measure of the model's performance, which reduces the 
impact of outliers and provides a solid baseline for comparison when assessing the effectiveness of 
subsequent modifications. We determined that ten tests would be sufficient for our test environment. This 
decision balances the need for reliable performance evaluation with practical considerations, such as time 
constraints. The rest of our evaluation will be split into three sub-sections to explore each stage of our 
methodology’s findings. 
 
5.1 The Original ChatGPT Generated Models 
Following the generation of our original models generated by GPT, we ran ten tests per metric resulting in 
40 results observed per model. The most common metric: accuracy, is shown in Table 4. Looking at the 
table, we can see that the DT, RF and SVM classifiers performed exceptionally well in being able to 
classify android permission-based malware, undoubtedly due to the cleanliness of the given dataset. 
Meanwhile the other classifiers also scored highly with zero, or close to zero, standard deviation.  
 
Table 4: ChatGPT generated model results using the accuracy metric (Score%/Standard Deviation) 

% CNN MLP Decision Tree Random Forest KNN SVM 



 

 

Run 1 99 / - 99 / - 100 / .00 100 / .00 98 / .00 100 / .00 

Run 2 99 / - 99 / - 100 / .00 100 / .00 98 / .00 100 / .00 

Run 3 99 / - 99 / - 100 / .00 100 / .00 98 / .00 100 / .00 

Run 4 99 / - 99 / - 100 / .00 100 / .00 98 / .00 100 / .00 

Run 5 99 / - 99 / - 100 / .00 100 / .00 98 / .00 100 / .00 

Run 6 99 / - 99 / - 100 / .00 100 / .00 98 / .00 100 / .00 

Run 7 99 / - 99 / - 100 / .00 100 / .00 98 / .00 100 / .00 

Run 8 99 / - 99 / - 100 / .00 100 / .00 98 / .00 100 / .00 

Run 9 99 / - 99 / - 100 / .00 100 / .00 98 / .00 100 / .00 

Run 10 99 / - 99 / - 100 / .00 100 / .00 98 / .00 100 / .00 

Average  99 / - 99 / - 100 / .00 100 / .00 98 / .00 100 / .00 

 
5.2 The initial modified Models 
Next, we conducted minor changes, as discussed in Section 4. When looking at the accuracy metric, shown 
in Table 5, we see that the CNN and MLP models suffered a slight dip in their overall scores and/or 
variance in standard deviation respectively. Our findings showing that the ability to successfully classify 
android permission-based malware was largely unaffected when compared to the GPT generated models. 
This was also echoed in the KNN model to a smaller degree. We reiterate that the only changes were minor 
and didn’t affect the models’ architectures in any way.  
 
Table 5: Phase 1 model results using the accuracy metric (Score%/Standard Deviation) 

% CNN MLP Decision 
Tree 

Random 
Forest 

KNN SVM 

Run 1 99 / .43 99 / .86 100 / .00 100 / .00 98 / .01 100 / .00 

Run 2 98 / 1.14 99 / .51 100 / .00 100 / .00 98 / .01 100 / .00 

Run 3 99 / .25 99 / .27 100 / .00 100 / .00 98 / .01 100 / .00 

Run 4 98 / .49 99 / .83 100 / .00 100 / .00 98 / .01 100 / .00 

Run 5 98 / .63 99 / .49 100 / .00 100 / .00 98 / .01 100 / .00 

Run 6 98 / .82 99 / .15 100 / .00 100 / .00 98 / .01 100 / .00 

Run 7 98 / .65 99 / .62 100 / .00 100 / .00 98 / .01 100 / .00 

Run 8 99 / .75 98 / .91 100 / .00 100 / .00 98 / .01 100 / .00 

Run 9 98 / .28 99 / .43 100 / .00 100 / .00 98 / .01 100 / .00 

Run 10 98 / .52 99 / .28 100 / .00 100 / .00 98 / .01 100 / .00 

Average  98 / .60 99 / .54 100 / .00 100 / .00 98 / .01 100 / .00 

 
 
5.3 The Final Models 
Finally, we present findings in relation to the Phase 2 modifications. When looking at the accuracy metric, 
as shown in Table 5, we can see an improvement in the CNN, MLP and KNN models, although it is minor. 



 

 

One observation from these results, in contrast to the others, is that the standard deviation was reduced 
quite substantially in some cases. We can see from this that the ability to successfully classify android 
permission-based malware has improved. 
 
Table 5: Our final model results using the accuracy metric (Score%/Standard Deviation) 

% CNN MLP Decision 
Tree 

Random 
Forest 

KNN SVM 

Run 1 99 / .00 99 / .11 100 / .00 100 / .00 99 / .00 100 /.00 

Run 2 100 / .00 99 / .06 100 / .00 100 / .00 99 / .00 100 / .00 

Run 3 99 / .08 99 / .10 100 / .00 100 / .00 99 / .00 100 /.00 

Run 4 99 / .12 99 / .06 100 / .00 100 / .00 99 / .00 100 / .00 

Run 5 99 / .08 99 / .09 100 / .00 100 / .00 99 / .00 100 /.00 

Run 6 99 / .03 99 / .02 100 / .00 100 / .00 99 / .00 100 / .00 

Run 7 99 / .14 99 / .11 100 / .00 100 / .00 99 / .00 100 /.00 

Run 8 99 / .01 99 / .07 100 / .00 100 / .00 99 / .00 100 / .00 

Run 9 99 / .10 99 / .13 100 / .00 100 / .00 99 / .00 100 / .00 

Run 10 99 / .01 99 / .05 100 / .00 100 / .00 99 / .00 100 / .00 

Average  99 / .05 99 / .08 100 / .00 100 / .00 99 / .00 100 / .00 

 

5.4 Training/Testing Loss 

Training loss in machine learning measures the model's error on the training dataset, reflecting how well 
the model is learning. It is calculated as the difference between the model's predictions and the actual 
values during training. 

 

Figure 10: Training loss figures for each model per test 



 

 

As we can see from Figure 10, the Phase 2 models performed at a more consistent rate with an overall 
lower trend in training loss than both GPT generated models. The GPT generated models themselves 
appear to have more variance and they appear to be more prone to anomalies. 

 

Figure 11: Testing loss figures for each model per test 

This is similar to the testing loss values for each model, as shown in Figure 11. We can see that the MLP 
GPT generated model performed notably worse than the Phase 2 models. However, the GPT generated 
CNN performed at a similar rate, but it scored the highest overall value when only comparing it against 
the two custom models. As in training, the custom models performed relatively consistently when 
compared to the GPT generated versions.  

5.5 Training/Testing Accuracy 

 

Figure 12: Training accuracy figures for each model per test 



 

 

The models training accuracy are shown in Figure 12. We see that the two GPT generated models 
performed at a worse rate than the custom models, with MLP being the more significant. The custom 
models also appeared to perform at a more consistent level overall than the GPT generated versions, but it 
is notable that test 4 for the custom MLP and test 5 did perform below average, while test 4 for the custom 
CNN performed at an above average rate.  

 

Figure 13: Testing accuracy figures for each model per test 

The overall theme was also evident in the testing accuracy too, shown in Figure 13. The GPT generated 
MLP performed at a notably lower accuracy than the other models. A key difference was that in these tests, 
the GPT generated CNN performed consistently better than the custom MLP model. While they are 
different models, and the custom CNN outperformed the GPT generated CNN. This was the first instance 
of the GPT generated models consistently scoring better than any custom model.  

 

6. DISCUSSION 

Overall, we see that our findings made some improvements over the GPT generated models although they 
are very similar. When looking at our findings in Section 5 we noted that our modifications did have some 
advantages over that of the original models GPT generated. We observed that the original models, 
especially the Decision Tree (DT), Random Forest (RF), and Support Vector Machine (SVM) classifiers, 
performed at a very high standard due to the quality and cleanliness of our dataset. These models required 
no initial tuning, which is uncommon. As a result, any improvements from our modifications were minor.  

Table 6: ChatGPT generated model results: overall averages for each metric (Score%/Standard 

Deviation) 

% CNN MLP Decision Tree Random Forest KNN SVM 

Accuracy 99 / - 99 / - 100 / .00 100 / .00 98 / .00 100 / .00 

Precision 99 / - 99 / - 100 / .00 100 / .00 98 / .00 100 / .00 

Recall 99 / - 98 / - 100 / .00 100 / .00 98 / .00 100 / .00 

F1 98 / - 98 / - 100 / .00 100 / .00 98 / .00 100 / .00 

 
Table 6 and Table 7 present the results of our evaluation. The original models exhibited high accuracy, 
precision, recall, and F1 scores, particularly for DT, RF, and SVM, which all achieved 100% across these 



 

 

metrics with minimal standard deviation. Our Phase 2 modifications yielded more reliable results, slightly 
improving the metrics' consistency. 

Table 7: Our final model results: overall averages for each metric (Score%/Standard Deviation) 

% CNN MLP Decision Tree Random Forest KNN SVM 

Accuracy 99 / .05 99 / .08 100 / .00 100 / .00 99 / .00 100 / .00 

Precision 99 / .06 99 / .09 100 / .00 100 / .00 99 / .00 100 / .00 

Recall 99 / .17 99 / .03 100 / .00 100 / .00 99 / .00 100 / .00 

F1 99 / .06 99 / .12 100 / .00 100 / .00 99 / .00 100 / .00 

The literature emphasises the challenges and shortcomings of LLM-generated code, particularly in terms 
of security and correctness. Our findings, however, demonstrate that with a high-quality dataset, some 
generated code can achieve near-perfect performance in malware detection tasks. While prior studies 
identified significant vulnerabilities and correctness issues, our research indicates that these issues can be 
mitigated through careful dataset preparation and slight modifications to the generated code. The 
discrepancy between the literature and our findings could be attributed to the specific context of malware 
detection, where binary classification tasks on a well-constructed dataset may be inherently more 
straightforward than other coding tasks assessed in previous studies. 
 Our comparative analysis highlights a divergence between the general findings in the literature 
and our specific results in the domain of malware detection. While acknowledging the broader concerns 
about LLM-generated code, our study provides evidence that, under the right conditions, ChatGPT can 
produce highly accurate and reliable results using the model code it generates for detecting malware. This 
opens avenues for further research to test these findings across different datasets and more complex 
domains, potentially offering deeper insights into the strengths and limitations of LLM-based code 
generation. 
 
6.1 Interpretation of the results 
The results of this study indicate that ChatGPT can be effectively utilised to generate machine learning 
classifiers for Android malware detection. This has significant implications for other researchers, as it 
demonstrates a novel approach to leveraging advanced language models for cybersecurity applications. By 
automating the creation of classifiers, researchers can save substantial time and resources that would 
otherwise be spent on manual feature engineering and model training. This accessibility is particularly 
beneficial for researchers who may lack extensive expertise in machine learning or programming, thereby 
democratising the field and enabling a broader range of contributions. By integrating ChatGPT in the 
development of machine learning classifiers, this study contributes to the growing body of knowledge on 
the intersection of natural language processing (NLP) and cybersecurity. Other researchers can build upon 
these results to further refine the models, explore different datasets, or apply similar techniques to other 
areas of cybersecurity. This study also underscores the potential for interdisciplinary collaboration. By 
showcasing the application of an NLP model in a cybersecurity context, it encourages researchers from 
different fields to explore cross-disciplinary approaches. This can lead to innovative solutions that leverage 
the strengths of various domains, ultimately advancing the state of the art in both AI and cybersecurity 
research. 
 
6.2 Practical implications 
The practical implications of using ChatGPT to generate machine learning classifiers for Android malware 
detection are substantial. By leveraging the capabilities of an advanced language model, we can 
significantly streamline the process of developing and deploying robust malware detection systems. Below, 
we outline several key practical implications and indicate how we ensured the realism and 
representativeness of the classifiers generated. The classifiers generated by ChatGPT demonstrated high 
accuracy and reliability when tested on publicly available datasets. This indicates that they can be 
effectively used to detect and classify Android malware in real-world scenarios. By integrating these 
classifiers into existing security solutions, organizations can improve their malware detection capabilities, 
leading to better protection of user data and enhanced overall security. 
 Moreover, developing machine learning classifiers traditionally involves extensive feature 
engineering, model training, and validation processes. Using ChatGPT to automate these steps can 



 

 

significantly reduce the time and costs associated with developing new classifiers. This is particularly 
beneficial for small to medium-sized enterprises (SMEs) and research institutions with limited resources. 
It enables them to implement advanced malware detection systems without extensive investment, and the 
approach of using ChatGPT for classifier generation is highly adaptable and scalable. It also allows for the 
rapid creation of new classifiers as new malware variants emerge, ensuring that malware detection systems 
can keep pace with evolving threats. This adaptability is crucial for maintaining robust security in Android 
malware. 

7. CONCLUSIONS 
The experimental results showed that ChatGPT can generate fully functional machine learning models for 
malware detection with high accuracy, without requiring any modifications when these models are applied 
to a structured dataset. This suggests that ChatGPT could significantly reduce the time and effort needed 
to develop malware detection systems, thereby promoting greater AI adoption in the cybersecurity 
industry. The findings indicate that GPT can effectively create simple machine learning models that 
achieve high accuracy in detecting malware, provided the dataset is clean, balanced, and has sufficient 
features. However, there are instances where the generated code does not work, as noted in the appendix. 
Nonetheless, the code that does function can still serve as a valuable starting point for companies and 
individuals, allowing experts to refine and enhance it as needed.  

Several inconsistencies have been highlighted in literature and in part, demonstrated in our 
findings. While LLM generated code can indeed be useful in many domains, it can suffer from code errors 
and poor programming choices. It is evident that while the models performed well, they do not perform as 
consistently, nor as accurately, as expertly crafted models. Thus, this leaves room for improvement on the 
part of LLM based code generation. In terms of generating machine learning code, an already niche sub-
section of programming, one could suggest that LLM’s should be trained on more ML code, and better 
code, to further the LLM’s capability of what a good model looks like.  
 Another direction would be to cut out the training middleman entirely. Instead, using existing 
tools and technologies such as autoML to create models for users, as these are less prone to providing the 
user with a model that doesn’t work due to a code error, or doesn’t perform as well as a user may like, due 
to built-in hyper parameter tuning. Both directions diverge into typical methodologies in machine learning 
for improving on existing systems. Both have merit and raise some interesting research questions and 
issues. For instance, acquiring more training data on machine learning models may be more problematic 
than worthwhile, since questions of ethics and data protection arise. Also, an autoML solution would likely 
cause a reasonable increase in the time it takes for an LLM to generate a ML model, and so the usability 
of such an integration would be in question.  
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Appendix 
Appendix A: 

GPT Prompt Log 

Classification: Green Yellow Red 

Score: 58.62% 22.41% 18.97% 

Prompt Response 

Generate an AutoML 
model for me 

I can provide you with a basic example of how you might use an AutoML library, 
such as TPOT, to automate the model selection and hyperparameter tuning process 

https://chat.openai.com/
https://scikit-learn.org/stable/modules/neural_networks_supervised.html
https://scikit-learn.org/stable/modules/neural_networks_supervised.html
https://scikit-learn.org/stable/modules/tree.html
https://scikit-learn.org/stable/modules/tree.html


 

 

 

Generate a 
bidirectional 

transformer model for 
natural language 

processing 

Creating a bidirectional transformer model for natural language processing (NLP) 
from scratch is a complex task that typically requires significant computational 
resources and expertise in deep learning. However, I can provide you with a high-
level overview of the steps involved 

Generate Chatbot code 
for me 

 

Generate a GPT API 
model for me 

I'm sorry for any confusion, but as of my last knowledge update in September 2021, 
OpenAI had not released a public API for GPT-3.5 or any later versions. However, 
OpenAI had previously provided access to GPT-3 through a limited beta program. 



 

 

If OpenAI has released an API for GPT-3.5 or any newer models since then, you 
should visit the OpenAI website or developer portal to get the most up-to-date 
information on how to access and use their API. Please note that the availability and 
usage policies may have changed since my last update, so it's essential to refer to the 
official OpenAI resources for accurate and current information. 

Generate a GPT3.5 
model for me 

I apologise for any confusion, but I cannot generate a GPT-3 model for you. GPT-3 
is a proprietary model developed by OpenAI, and access to it typically requires a 
partnership or API access provided by OpenAI directly. 

Can you generate code, 
or is it searched for 

I can certainly help generate code for various programming languages and tasks 
based on the input and requirements you provide. I can also explain code, provide 
code samples, and assist with debugging and optimization. However, please keep in 
mind that while I can generate code, it's important to review and test the code for 
correctness, security, and efficiency, as I cannot guarantee that the code I generate is 
free of errors or follows best practices for every specific use case. 
If you have a specific coding task or question, feel free to describe it, and I'll do my 
best to assist you in generating code or providing guidance. 

Generate an SKLearn 
model for the iris 
dataset  

 

Where do you get this 
code from 

The code I provided to create a scikit-learn model for the Iris dataset is generated 
based on my training data and knowledge of Python programming and scikit-learn. I 
don't retrieve code from external sources; instead, I generate code based on 
commonly used programming patterns and best practices for the given task. 



 

 

Generate a KNN 
model for the iris 

dataset with a 
shufflesplit of ten and 

cross validation 

 

Why do all of your 
machine learning 

models use random 
state of 42 

The use of a random_state of 42 (or any other fixed number) in machine learning 
code is a common practice for reproducibility. It ensures that the random processes, 
such as data splitting, initialization of models, or random shuffling, produce 
consistent results every time you run the code. 
Here are a few reasons why a specific value like 42 might be used: 

● Reproducibility: Machine learning experiments often involve randomness 
(e.g., random data splitting, initialization of model weights, or random 
sampling). Setting a fixed random_state allows researchers, developers, or 
data scientists to obtain the same results every time they run the code, 
making it easier to verify and share their work. 

● Debugging and Testing: Using a fixed random seed is helpful when 
debugging or testing machine learning models. It allows you to track down 
and reproduce specific issues or evaluate the model's behaviour consistently. 

● Consistency: When working on a team or collaborating with others, using a 
common random_state value ensures that everyone gets the same results, 
making it easier to compare and discuss model performance. 

While 42 is just a commonly chosen value and not inherently special, any fixed 
integer can be used as a random_state. The specific value doesn't matter as long as it 
remains consistent across runs of the code. You could choose any number that's 
meaningful to you or your team, or simply stick to conventions like 42 for simplicity. 

How do you split a 
dataset into training 

and testing sets using 
scikit-learn? 

In scikit-learn, you can split a dataset into training and testing sets using the 
train_test_split function. This function shuffles the data and divides it into two 
subsets: one for training your machine learning model and the other for testing its 
performance. Here's how you can use it: 



 

 

 

Write code to perform 
standardisation (z-
score scaling) on a 

dataset. 

To perform standardisation (z-score scaling) on a dataset in scikit-learn, you can use 
the StandardScaler class. This scaler will transform your data so that it has a mean of 
0 and a standard deviation of 1. Here's how you can use it:

 

Implement a logistic 
regression classifier for 

binary classification. 

To implement a logistic regression classifier for binary classification in Python using 
scikit-learn, you can follow these steps. In this example, we'll use a sample dataset 
for demonstration purposes: 
from sklearn.datasets import make_classification 
from sklearn.model_selection import train_test_split 
from sklearn.linear_model import LogisticRegression 
from sklearn.metrics import accuracy_score, confusion_matrix, 
classification_report 
# Create a sample dataset for binary classification 
X, y = make_classification(n_samples=1000, n_features=2, n_classes=2, 
n_clusters_per_class=1, random_state=42) 
# Split the data into training and testing sets 
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, 
random_state=42) 
# Create a Logistic Regression classifier 
classifier = LogisticRegression() 
# Train the classifier on the training data 
classifier.fit(X_train, y_train) 
# Make predictions on the testing data 
y_pred = classifier.predict(X_test) 
# Evaluate the classifier 



 

 

accuracy = accuracy_score(y_test, y_pred) 
conf_matrix = confusion_matrix(y_test, y_pred) 
class_report = classification_report(y_test, y_pred) 
# Display the results 
print("Accuracy:", accuracy) 
print("Confusion Matrix:\n", conf_matrix) 
print("Classification Report:\n", class_report) 

How can you visualise 
the decision boundary 

of a 2D classifier? 

You can visualise the decision boundary of a 2D classifier by creating a contour plot 
or scatter plot that shows the decision regions or boundaries in the feature space. 
Here's how you can do it using Python and matplotlib: 
Assuming you have a trained classifier classifier and the feature data X (which should 
be a 2D array with two features), you can follow these steps to visualise the decision 
boundary: 

1. Define a grid of points in the feature space to create a mesh for prediction. 
2. Use the classifier to predict the class labels for each point in the grid. 
3. Create a contour plot or a scatter plot to visualise the decision boundary. 

Here's an example: 
import numpy as np 
import matplotlib.pyplot as plt 
 
# Generate a grid of points to create a mesh 
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 
xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.01), np.arange(y_min, y_max, 
0.01)) 
 
# Use the classifier to predict the class labels for each point in the grid 
Z = classifier.predict(np.c_[xx.ravel(), yy.ravel()]) 
Z = Z.reshape(xx.shape) 
 
# Create a contour plot to visualise the decision boundary 
plt.contourf(xx, yy, Z, alpha=0.8, cmap=plt.cm.RdBu) 
plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.RdBu, edgecolor='k')  # Scatter plot of 
the data points 
plt.xlabel('Feature 1') 
plt.ylabel('Feature 2') 
plt.title('Decision Boundary of 2D Classifier') 
plt.show() 

Write code to perform 
k-fold cross-validation 
for a machine learning 

model. 

K-fold cross-validation is a technique for assessing a machine learning model's 
performance by splitting the dataset into K subsets (folds). It involves training and 
evaluating the model K times, using different subsets as the test set and the remaining 
data as the training set in each iteration. Here's an example of how to perform K-fold 
cross-validation using scikit-learn:



 

 

 

Create a random forest 
classifier and fit it to a 

dataset. 

 



 

 

How do you perform 
hyperparameter tuning 
using GridSearchCV? 

Hyperparameter tuning is a critical step in optimising the performance of a machine 
learning model. You can use GridSearchCV in scikit-learn to systematically search 
for the best combination of hyperparameters by evaluating the model's performance 
using cross-validation. Here's a step-by-step guide on how to perform 
hyperparameter tuning using GridSearchCV: 
from sklearn.model_selection import GridSearchCV 
from sklearn.model_selection import train_test_split 
from sklearn.ensemble import RandomForestClassifier  # Replace with your chosen 
model 
X, y = your_features, your_target  # Replace with your data 
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, 
random_state=42) 
param_grid = { 
    'n_estimators': [50, 100, 150], 
    'max_depth': [None, 10, 20], 
    'min_samples_split': [2, 5, 10], 
    'min_samples_leaf': [1, 2, 4] 
} 
model = RandomForestClassifier(random_state=42) 
grid_search = GridSearchCV(model, param_grid, cv=5, scoring='accuracy') 
grid_search.fit(X_train, y_train) 
best_params = grid_search.best_params_ 
best_model = grid_search.best_estimator_ 
y_pred = best_model.predict(X_test) 
accuracy = accuracy_score(y_test, y_pred) 
print("Best Model Accuracy:", accuracy) 

Implement k-means 
clustering on a dataset 

and visualise the 
clusters. 

To implement K-means clustering on a dataset and visualise the clusters, you can use 
Python with libraries like NumPy, scikit-learn, and Matplotlib. Here's a step-by-step 
guide: 
import numpy as np 
import matplotlib.pyplot as plt 
from sklearn.cluster import KMeans 
from sklearn.datasets import make_blobs  # Replace with your dataset 
 
# Generate a sample dataset (replace with your own data) 
X, y = make_blobs(n_samples=300, centers=3, random_state=42) 
 
# Create and fit the K-means model 
kmeans = KMeans(n_clusters=3, random_state=42) 
kmeans.fit(X) 
 
# Get the cluster labels for each data point 
labels = kmeans.labels_ 
 
# Get the cluster centers 
cluster_centers = kmeans.cluster_centers_ 
 
# Visualise the data points and cluster centres 
plt.scatter(X[:, 0], X[:, 1], c=labels, cmap='viridis') 
plt.scatter(cluster_centers[:, 0], cluster_centers[:, 1,], marker='x', s=200, c='red') 
plt.xlabel('Feature 1') 
plt.ylabel('Feature 2') 
plt.title('K-means Clustering') 
plt.show() 

Write code to perform 
principal component 
analysis (PCA) for 

Principal Component Analysis (PCA) is a technique for dimensionality reduction. It 
aims to project data into a lower-dimensional space while preserving the most 
significant variance in the original data. You can use the scikit-learn library to 



 

 

dimensionality 
reduction. 

perform PCA in Python. Here's how you can do it: 

 

Build a support vector 
machine (SVM) 
classifier for a 

classification task. 

To build a Support Vector Machine (SVM) classifier for a classification task using 
scikit-learn in Python, you can follow these steps. In this example, I'll use the popular 
Iris dataset for demonstration: 



 

 

 

How can you calculate 
the accuracy, 

precision, recall, and 
F1-score of a 

classification model? 

You can calculate the accuracy, precision, recall, and F1-score of a classification 
model using scikit-learn in Python. Here's how to do it: 
from sklearn.metrics import accuracy_score, precision_score, recall_score, 
f1_score, classification_report, confusion_matrix 
 
# Example true and predicted labels 
y_true = [1, 0, 1, 1, 0, 0, 1, 0, 1, 1] 
y_pred = [1, 0, 1, 0, 1, 0, 1, 1, 0, 1] 
 
# Accuracy 
accuracy = accuracy_score(y_true, y_pred) 
print("Accuracy:", accuracy) 
 
# Precision 
precision = precision_score(y_true, y_pred) 
print("Precision:", precision) 
 
# Recall 
recall = recall_score(y_true, y_pred) 
print("Recall:", recall) 
 
# F1-score 
f1 = f1_score(y_true, y_pred) 
print("F1-score:", f1) 
 
# Classification report 



 

 

report = classification_report(y_true, y_pred) 
print("Classification Report:\n", report) 
 
# Confusion matrix 
conf_matrix = confusion_matrix(y_true, y_pred) 
print("Confusion Matrix:\n", conf_matrix) 

Implement a simple 
linear regression model 

using scikit-learn. 

A simple linear regression model can be implemented using scikit-learn for 
performing linear regression in Python. Here's a step-by-step guide: 
import numpy as np 
from sklearn.linear_model import LinearRegression 
import matplotlib.pyplot as plt 
 
# Generate sample data 
np.random.seed(0) 
X = 2 * np.random.rand(100, 1) 
y = 4 + 3 * X + np.random.rand(100, 1) 
 
# Create a LinearRegression model 
model = LinearRegression() 
 
# Fit the model to the data 
model.fit(X, y) 
 
# Make predictions 
X_new = np.array([[0], [2]]) 
y_pred = model.predict(X_new) 
 
# Visualise the data and the regression line 
plt.scatter(X, y, alpha=0.6) 
plt.plot(X_new, y_pred, "r-", linewidth=2) 
plt.xlabel("X") 
plt.ylabel("y") 
plt.title("Linear Regression") 
plt.show() 

Create a confusion 
matrix for evaluating a 

classifier's 
performance. 

A confusion matrix is a crucial tool for evaluating a classifier's performance, 
especially in binary and multiclass classification problems. You can create a 
confusion matrix in Python using scikit-learn. Here's how: 
from sklearn.metrics import confusion_matrix 
 
# Example true and predicted labels 
y_true = [1, 0, 1, 1, 0, 0, 1, 0, 1, 1] 
y_pred = [1, 0, 1, 0, 1, 0, 1, 1, 0, 1] 
 
# Create the confusion matrix 
confusion = confusion_matrix(y_true, y_pred) 
 
# Display the confusion matrix 
print("Confusion Matrix:") 
print(confusion) 

Write code to handle 
missing data in a 

dataset using 
imputation. 

Handling missing data is an essential step in data preprocessing. You can use 
imputation techniques to fill in missing values in a dataset. One common approach is 
to use the mean, median, or mode of the available data to replace the missing values. 
Here's an example of how to handle missing data using scikit-learn and the 
SimpleImputer class: 
import numpy as np 
from sklearn.impute import SimpleImputer 



 

 

 
# Example dataset with missing values 
data = np.array([[1, 2, np.nan], 
                 [4, np.nan, 6], 
                 [7, 8, 9]]) 
 
# Create a SimpleImputer object to impute missing values with the mean 
imputer = SimpleImputer(strategy='mean') 
 
# Fit the imputer to the dataset and transform it to impute missing values 
data_imputed = imputer.fit_transform(data) 
 
# Print the imputed dataset 
print("Imputed Data:") 
print(data_imputed) 

Perform feature 
selection using the 

SelectKBest method. 

Feature selection is an essential step in machine learning to choose the most relevant 
features to improve model performance and reduce overfitting. The SelectKBest 
method in scikit-learn is a way to select the top K features based on statistical tests. 
Here's how to perform feature selection using the SelectKBest method: 
from sklearn.datasets import load_iris 
from sklearn.feature_selection import SelectKBest, chi2 
 
# Load the Iris dataset (replace with your dataset) 
data = load_iris() 
X = data.data 
y = data.target 
 
# Create a SelectKBest object and specify the scoring function 
k_best = SelectKBest(score_func=chi2, k=2)  # Select the top 2 features 
 
# Fit and transform the data to select the top K features 
X_new = k_best.fit_transform(X, y) 
 
# Visualise the selected features 
selected_features = k_best.get_support() 
print("Selected features:", selected_features) 

Implement a Naive 
Bayes classifier for 
text classification. 

A Naive Bayes classifier is commonly used for text classification tasks, such as spam 
detection and sentiment analysis. Here's how to implement a Naive Bayes classifier 
for text classification using scikit-learn in Python. In this example, I'll use the 20 
Newsgroups dataset as a sample text classification task: 
from sklearn.datasets import fetch_20newsgroups 
from sklearn.feature_extraction.text import TfidfVectorizer 
from sklearn.naive_bayes import MultinomialNB 
from sklearn.model_selection import train_test_split 
from sklearn.metrics import accuracy_score, classification_report 
# Load the 20 Newsgroups dataset (you can use your own dataset) 
newsgroups = fetch_20newsgroups(subset='all', remove=('headers', 'footers', 
'quotes')) 
 
X = newsgroups.data 
y = newsgroups.target 
 
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, 
random_state=42) 
tfidf_vectorizer = TfidfVectorizer(max_features=5000) 
X_train_tfidf = tfidf_vectorizer.fit_transform(X_train) 
X_test_tfidf = tfidf_vectorizer.transform(X_test) 



 

 

naive_bayes_classifier = MultinomialNB() 
naive_bayes_classifier.fit(X_train_tfidf, y_train) 
naive_bayes_classifier = MultinomialNB() 
naive_bayes_classifier.fit(X_train_tfidf, y_train) 
y_pred = naive_bayes_classifier.predict(X_test_tfidf) 
accuracy = accuracy_score(y_test, y_pred) 
report = classification_report(y_test, y_pred, 
target_names=newsgroups.target_names) 
 
print("Accuracy:", accuracy) 
print("Classification Report:\n", report) 

How do you save and 
load a scikit-learn 

model to/from a file? 

You can save and load a scikit-learn model to/from a file using Python's pickle 
module, which allows you to serialise and deserialize Python objects. Here's how to 
do it: 
import pickle 
from sklearn.datasets import load_iris 
from sklearn.ensemble import RandomForestClassifier 
 
# Load or create your scikit-learn model 
data = load_iris() 
X, y = data.data, data.target 
model = RandomForestClassifier(n_estimators=100, random_state=42) 
model.fit(X, y) 
 
# Save the model to a file using pickle 
with open('model.pkl', 'wb') as model_file: 
    pickle.dump(model, model_file) 
Loading a scikit-learn model from a file: 
import pickle 
 
# Load the saved model from a file using pickle 
with open('model.pkl', 'rb') as model_file: 
    loaded_model = pickle.load(model_file) 

Write code to apply 
Min-Max scaling to a 

dataset. 

Min-Max scaling (also known as feature scaling or normalisation) is a technique used 
to scale the features of a dataset to a specific range, typically between 0 and 1. You 
can apply Min-Max scaling to a dataset using scikit-learn. Here's how to do it: 
from sklearn.preprocessing import MinMaxScaler 
import numpy as np 
 
# Create a sample dataset (replace with your data) 
data = np.array([[1.0, 2.0, 3.0], 
                 [4.0, 5.0, 6.0], 
                 [7.0, 8.0, 9.0]]) 
 
# Create a MinMaxScaler object 
scaler = MinMaxScaler() 
 
# Fit the scaler to your data and transform it to apply Min-Max scaling 
scaled_data = scaler.fit_transform(data) 
 
# Display the scaled data 
print("Original Data:\n", data) 
print("Scaled Data:\n", scaled_data) 

Create a pipeline to 
preprocess data and 

train a machine 

Creating a pipeline in scikit-learn is a powerful way to streamline the process of 
preprocessing data and training a machine learning model. Pipelines allow you to 
combine multiple steps, such as data preprocessing, feature engineering, and model 



 

 

learning model. training, into a single, easy-to-use entity. Here's an example of how to create a simple 
pipeline for a classification task: 
from sklearn.datasets import load_iris 
from sklearn.model_selection import train_test_split 
from sklearn.preprocessing import StandardScaler 
from sklearn.decomposition import PCA 
from sklearn.ensemble import RandomForestClassifier 
from sklearn.pipeline import Pipeline 
from sklearn.metrics import accuracy_score 
 
# Load the dataset (Iris dataset as an example) 
data = load_iris() 
X = data.data 
y = data.target 
 
# Split the data into training and testing sets 
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, 
random_state=42) 
 
# Create a pipeline with multiple steps 
pipeline = Pipeline([ 
    ('scaler', StandardScaler()),  # Step 1: Standardise the features 
    ('pca', PCA(n_components=2)),  # Step 2: Reduce dimensionality with PCA 
    ('classifier', RandomForestClassifier(n_estimators=100, random_state=42))  # 
Step 3: Train a RandomForestClassifier 
]) 
 
# Fit the entire pipeline to the training data 
pipeline.fit(X_train, y_train) 
 
# Make predictions on the testing data 
y_pred = pipeline.predict(X_test) 
 
# Evaluate the classifier's performance 
accuracy = accuracy_score(y_test, y_pred) 
print("Accuracy:", accuracy) 

Implement a decision 
tree classifier for a 
classification task. 

A Decision Tree classifier is a popular machine learning algorithm used for both 
classification and regression tasks. Here's how to implement a Decision Tree 
classifier for a classification task using scikit-learn in Python: 
from sklearn.datasets import load_iris 
from sklearn.model_selection import train_test_split 
from sklearn.tree import DecisionTreeClassifier 
from sklearn.metrics import accuracy_score, classification_report 
 
# Load the dataset (Iris dataset as an example) 
data = load_iris() 
X = data.data 
y = data.target 
 
# Split the data into training and testing sets 
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, 
random_state=42) 
 
# Create a Decision Tree classifier 
classifier = DecisionTreeClassifier(random_state=42) 
 
# Fit the classifier to the training data 
classifier.fit(X_train, y_train) 



 

 

 
# Make predictions on the testing data 
y_pred = classifier.predict(X_test) 
 
# Evaluate the classifier's performance 
accuracy = accuracy_score(y_test, y_pred) 
report = classification_report(y_test, y_pred, target_names=data.target_names) 
 
print("Accuracy:", accuracy) 
print("Classification Report:\n", report) 

How can you perform 
one-hot encoding of 

categorical variables? 

One-hot encoding is a technique used to convert categorical variables into a 
numerical format that can be used for machine learning models. Each category is 
transformed into a binary (0 or 1) representation, creating new binary columns for 
each category. You can perform one-hot encoding in Python using libraries like 
scikit-learn or pandas. Here's how to do it using both methods: 
from sklearn.preprocessing import OneHotEncoder 
import numpy as np 
 
# Sample data with categorical variables 
data = np.array([['Red'], ['Green'], ['Blue'], ['Green'], ['Red']]) 
 
# Create a OneHotEncoder object 
encoder = OneHotEncoder(sparse=False) 
 
# Fit and transform the data to one-hot encoding 
one_hot_encoded = encoder.fit_transform(data) 
 
# Display the one-hot encoded data 
print("One-Hot Encoded Data:\n", one_hot_encoded) 
 
Using pandas (get_dummies): 
import pandas as pd 
 
# Sample data with categorical variables 
data = pd.DataFrame({'Color': ['Red', 'Green', 'Blue', 'Green', 'Red']}) 
 
# Perform one-hot encoding using pandas' get_dummies 
one_hot_encoded = pd.get_dummies(data, columns=['Color']) 
 
# Display the one-hot encoded data 
print("One-Hot Encoded Data:\n", one_hot_encoded) 

Write code to plot 
learning curves for a 

machine learning 
model. 

Plotting learning curves is a useful way to visualise how the performance of a 
machine learning model evolves as the size of the training dataset increases. Learning 
curves can help you identify issues like overfitting or underfitting. Here's an example 
of how to plot learning curves in scikit-learn: 
import numpy as np 
import matplotlib.pyplot as plt 
from sklearn.datasets import load_iris 
from sklearn.model_selection import learning_curve 
from sklearn.ensemble import RandomForestClassifier 
 
# Load the dataset (Iris dataset as an example) 
data = load_iris() 
X = data.data 
y = data.target 
 
# Create a RandomForestClassifier (replace with your preferred model) 



 

 

model = RandomForestClassifier(n_estimators=100, random_state=42) 
 
# Specify the training set sizes 
train_sizes, train_scores, test_scores = learning_curve( 
    model, X, y, cv=5, train_sizes=np.linspace(0.1, 1.0, 10), n_jobs=-1 
) 
 
# Calculate the mean and standard deviation of training and testing scores 
train_scores_mean = np.mean(train_scores, axis=1) 
train_scores_std = np.std(train_scores, axis=1) 
test_scores_mean = np.mean(test_scores, axis=1) 
test_scores_std = np.std(test_scores, axis=1) 
 
# Create a learning curve plot 
plt.figure(figsize=(8, 6)) 
plt.title("Learning Curve") 
plt.xlabel("Training Examples") 
plt.ylabel("Score") 
 
plt.fill_between( 
    train_sizes, train_scores_mean - train_scores_std, train_scores_mean + 
train_scores_std, alpha=0.1, color="r" 
) 
plt.fill_between( 
    train_sizes, test_scores_mean - test_scores_std, test_scores_mean + 
test_scores_std, alpha=0.1, color="g" 
) 
 
plt.plot(train_sizes, train_scores_mean, 'o-', color="r", label="Training Score") 
plt.plot(train_sizes, test_scores_mean, 'o-', color="g", label="Cross-Validation 
Score") 
 
plt.legend(loc="best") 
plt.grid() 
plt.show() 

Build a gradient 
boosting classifier and 

fit it to a dataset. 

Gradient Boosting is a powerful ensemble method used for classification tasks. You 
can build and fit a Gradient Boosting Classifier to a dataset using scikit-learn in 
Python. Here's an example: 
from sklearn.datasets import load_iris 
from sklearn.model_selection import train_test_split 
from sklearn.ensemble import GradientBoostingClassifier 
from sklearn.metrics import accuracy_score, classification_report 
 
# Load the dataset (Iris dataset as an example) 
data = load_iris() 
X = data.data 
y = data.target 
 
# Split the data into training and testing sets 
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, 
random_state=42) 
 
# Create a Gradient Boosting Classifier 
classifier = GradientBoostingClassifier(n_estimators=100, random_state=42) 
 
# Fit the classifier to the training data 
classifier.fit(X_train, y_train) 
 



 

 

# Make predictions on the testing data 
y_pred = classifier.predict(X_test) 
 
# Evaluate the classifier's performance 
accuracy = accuracy_score(y_test, y_pred) 
report = classification_report(y_test, y_pred, target_names=data.target_names) 
 
print("Accuracy:", accuracy) 
print("Classification Report:\n", report) 

Implement a K-Nearest 
Neighbors (KNN) 

classifier 

from sklearn.datasets import load_iris 
from sklearn.model_selection import train_test_split 
from sklearn.neighbors import KNeighborsClassifier 
from sklearn.metrics import accuracy_score, classification_report 
 
# Load the dataset (Iris dataset as an example) 
data = load_iris() 
X = data.data 
y = data.target 
 
# Split the data into training and testing sets 
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, 
random_state=42) 
 
# Create a KNN classifier 
k = 3  # Number of neighbours 
classifier = KNeighborsClassifier(n_neighbors=k) 
 
# Fit the classifier to the training data 
classifier.fit(X_train, y_train) 
 
# Make predictions on the testing data 
y_pred = classifier.predict(X_test) 
 
# Evaluate the classifier's performance 
accuracy = accuracy_score(y_test, y_pred) 
report = classification_report(y_test, y_pred, target_names=data.target_names) 
 
print("Accuracy:", accuracy) 
print("Classification Report:\n", report) 

How do you perform 
feature engineering to 
create new features? 

Feature engineering involves creating new features from the existing data to improve 
a machine learning model's performance. It's a crucial step in the data preprocessing 
process. Here are some common techniques for performing feature engineering: 
Polynomial Features: You can create new features by raising existing features to a 
power, which is useful when dealing with non-linear relationships: 
from sklearn.preprocessing import PolynomialFeatures 
poly = PolynomialFeatures(degree=2) 
X_poly = poly.fit_transform(X) 
Interaction Features: Create new features as the product of two or more existing 
features. This can capture relationships between variables. 
Binning or Discretization: Convert continuous numerical features into categorical 
features by creating bins or intervals. 
from sklearn.preprocessing import KBinsDiscretizer 
discretizer = KBinsDiscretizer(n_bins=3, encode='onehot', strategy='uniform') 
X_binned = discretizer.fit_transform(X) 
One-Hot Encoding: Convert categorical variables into a binary vector to represent 
the categories. 
from sklearn.preprocessing import StandardScaler 



 

 

scaler = StandardScaler() 
X_scaled = scaler.fit_transform(X) 
Feature Extraction: Use dimensionality reduction techniques like Principal 
Component Analysis (PCA) or Linear Discriminant Analysis (LDA) to create a new 
set of features that capture most of the variance in the original data. 
from sklearn.decomposition import PCA 
pca = PCA(n_components=2) 
X_pca = pca.fit_transform(X) 
Time Series Features: Extract time-based features such as day of the week, month, or 
year from timestamps in time series data. 
Text Data Features: For text data, you can perform techniques like TF-IDF, word 
embeddings (Word2Vec, GloVe), or topic modelling to create features from text. 
Domain-Specific Features: Incorporate domain knowledge to engineer features that 
are relevant to the problem you're solving. 
Feature Crosses: Combine two or more features to create new ones that capture 
interactions between them. 

Write code to calculate 
the silhouette score for 
clustering evaluation. 

The silhouette score is a metric used to evaluate the quality of clusters in a clustering 
algorithm. A higher silhouette score indicates that the data points are well clustered 
and have good separation between clusters. You can calculate the silhouette score in 
Python using scikit-learn. Here's an example: 

 

Create a ROC curve 
for a binary 

classification model. 

A Receiver Operating Characteristic (ROC) curve is a useful tool for visualising the 
performance of a binary classification model, specifically for varying thresholds. You 
can create an ROC curve in Python using scikit-learn. Here's an example: 
from sklearn.datasets import make_classification 
from sklearn.model_selection import train_test_split 
from sklearn.ensemble import RandomForestClassifier 
from sklearn.metrics import roc_curve, roc_auc_score, auc 
import matplotlib.pyplot as plt 
 



 

 

# Generate synthetic binary classification data 
X, y = make_classification(n_samples=1000, n_features=20, random_state=42) 
 
# Split the data into training and testing sets 
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, 
random_state=42) 
 
# Create a binary classification model (Random Forest Classifier as an example) 
model = RandomForestClassifier(n_estimators=100, random_state=42) 
model.fit(X_train, y_train) 
 
# Get predicted probabilities for the positive class 
y_scores = model.predict_proba(X_test)[:, 1] 
 
# Calculate ROC curve 
fpr, tpr, thresholds = roc_curve(y_test, y_scores) 
 
# Calculate AUC (Area Under the ROC Curve) 
roc_auc = auc(fpr, tpr) 
 
# Plot the ROC curve 
plt.figure(figsize=(8, 6)) 
plt.plot(fpr, tpr, color='darkorange', lw=2, label=f'ROC curve (AUC = 
{roc_auc:.2f})') 
plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--') 
plt.xlim([0.0, 1.0]) 
plt.ylim([0.0, 1.05]) 
plt.xlabel('False Positive Rate') 
plt.ylabel('True Positive Rate') 
plt.title('Receiver Operating Characteristic (ROC) Curve') 
plt.legend(loc='lower right') 
plt.grid() 
plt.show() 



 

 

Implement a random 
search for 

hyperparameter tuning. 

Randomised Search is a technique for hyperparameter tuning that randomly samples 
a set of hyperparameter combinations from predefined ranges. It's more efficient than 
an exhaustive grid search and is available in scikit-learn through the 
RandomizedSearchCV class. Here's an example of how to perform hyperparameter 
tuning using randomised search: 
from sklearn.datasets import load_iris 
from sklearn.model_selection import train_test_split, RandomizedSearchCV 
from sklearn.ensemble import RandomForestClassifier 
import numpy as np 
 
# Load the dataset (Iris dataset as an example) 
data = load_iris() 
X = data.data 
y = data.target 
 
# Split the data into training and testing sets 
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, 
random_state=42) 
 
# Define hyperparameter ranges to search 
param_dist = { 
    'n_estimators': [50, 100, 150, 200], 
    'max_depth': [None, 10, 20, 30], 
    'min_samples_split': [2, 5, 10], 
    'min_samples_leaf': [1, 2, 4], 
    'max_features': ['auto', 'sqrt', 'log2', None], 
} 
 
# Create a RandomizedSearchCV object 
clf = RandomForestClassifier(random_state=42) 
random_search = RandomizedSearchCV(clf, param_distributions=param_dist, 
n_iter=20, cv=5, random_state=42) 
 
# Fit the randomised search to the training data 
random_search.fit(X_train, y_train) 
 
# Get the best hyperparameters 
best_params = random_search.best_params_ 
print("Best Hyperparameters:", best_params) 
 
# Make predictions using the best model 
best_model = random_search.best_estimator_ 
y_pred = best_model.predict(X_test) 
 
# Evaluate the model's performance 
from sklearn.metrics import accuracy_score 
accuracy = accuracy_score(y_test, y_pred) 
print("Accuracy:", accuracy) 

How can you perform 
time series forecasting 

using scikit-learn? 

Scikit-learn is primarily designed for traditional machine learning tasks, and while it 
may not be the best choice for time series forecasting, you can still use it for some 
aspects of time series analysis, especially when time series data is transformed into a 
supervised learning problem. Below are the general steps to perform time series 
forecasting using scikit-learn: 

● Data Preparation: You need to prepare your time series data for use in a 
supervised learning context. This typically involves creating lag features or 
using a rolling window approach to convert time series data into a tabular 
format. Each row in your dataset represents a specific time point with 
features derived from past time steps. 



 

 

● Feature Engineering: Define lag features as input features and the future 
values you want to predict as the target variable. 

● Train-Test Split: Split your dataset into a training set and a testing 
(validation) set, keeping the temporal order of the data intact. You might use 
a time-based split or cross-validation if the order matters. 

● Model Selection: Choose a scikit-learn model suitable for regression or time 
series forecasting, such as linear regression, support vector regression, 
decision tree regression, or ensemble methods. 

● Model Training: Fit the selected model to the training data. 
● Model Evaluation: Evaluate the model's performance using appropriate 

regression metrics (e.g., Mean Absolute Error, Mean Squared Error, etc.). 
● Hyperparameter Tuning: Perform hyperparameter tuning if needed to 

optimise the model's performance. 
● Forecasting: Use the trained model to make predictions on the test data or 

future data points. 
Here's a simplified example of how to perform time series forecasting using linear 
regression in scikit-learn: 
from sklearn.linear_model import LinearRegression 
from sklearn.metrics import mean_squared_error 
import numpy as np 
 
# Simulated time series data 
# Replace this with your own time series data 
time_series = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]) 
target = np.array([11, 13, 15, 17, 19, 21, 23, 25, 27, 29]) 
 
# Create lag features 
lags = 3 
X, y = [], [] 
for i in range(lags, len(time_series)): 
    X.append(time_series[i-lags:i]) 
    y.append(target[i]) 
 
# Train-test split 
split = int(0.7 * len(X)) 
X_train, y_train = X[:split], y[:split] 
X_test, y_test = X[split:], y[split:] 
 
# Create and train a linear regression model 
model = LinearRegression() 
model.fit(X_train, y_train) 
 
# Make predictions 
y_pred = model.predict(X_test) 
 
# Evaluate the model 
mse = mean_squared_error(y_test, y_pred) 
print(f"Mean Squared Error: {mse}") 

Write code to handle 
class imbalance in a 

classification problem. 

Handling class imbalance is crucial in a classification problem, as imbalanced 
datasets can lead to biassed models that perform poorly on underrepresented classes. 
There are various techniques to address class imbalance. Here's an example of how 
to do it in Python using scikit-learn: 
from sklearn.datasets import load_iris 
from sklearn.model_selection import train_test_split 
from sklearn.ensemble import RandomForestClassifier 
from sklearn.metrics import accuracy_score, classification_report, 
confusion_matrix 
from imblearn.over_sampling import RandomOverSampler 



 

 

from imblearn.under_sampling import RandomUnderSampler 
from imblearn.combine import SMOTEENN 
 
# Load the dataset (Iris dataset as an example) 
data = load_iris() 
X = data.data 
y = data.target 
 
# Introduce class imbalance (undersample one class) 
X, y = X[y != 0], y[y != 0] 
 
# Split the data into training and testing sets 
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, 
random_state=42) 
 
# RandomOverSampler to oversample minority class 
# ros = RandomOverSampler(sampling_strategy='auto', random_state=42) 
# X_train, y_train = ros.fit_resample(X_train, y_train) 
 
# RandomUnderSampler to undersample majority class 
# rus = RandomUnderSampler(sampling_strategy='auto', random_state=42) 
# X_train, y_train = rus.fit_resample(X_train, y_train) 
 
# SMOTE-ENN to oversample and clean 
# smote_enn = SMOTEENN(sampling_strategy='auto', random_state=42) 
# X_train, y_train = smote_enn.fit_resample(X_train, y_train) 
 
# Create a Random Forest Classifier 
clf = RandomForestClassifier(n_estimators=100, random_state=42) 
 
# Fit the classifier to the training data 
clf.fit(X_train, y_train) 
 
# Make predictions on the testing data 
y_pred = clf.predict(X_test) 
 
# Evaluate the classifier's performance 
accuracy = accuracy_score(y_test, y_pred) 
report = classification_report(y_test, y_pred, target_names=data.target_names) 
conf_matrix = confusion_matrix(y_test, y_pred) 
 
print("Accuracy:", accuracy) 
print("Classification Report:\n", report) 
print("Confusion Matrix:\n", conf_matrix) 

Build a multi-layer 
perceptron (MLP) 

neural network 
classifier. 

A Multi-Layer Perceptron (MLP) is a type of feedforward neural network commonly 
used for classification tasks. You can create an MLP classifier in Python using 
libraries like scikit-learn and Keras. Below is an example using scikit-learn: 
from sklearn.datasets import load_iris 
from sklearn.model_selection import train_test_split 
from sklearn.neural_network import MLPClassifier 
from sklearn.metrics import accuracy_score, classification_report 
 
# Load the dataset (Iris dataset as an example) 
data = load_iris() 
X = data.data 
y = data.target 
 
# Split the data into training and testing sets 



 

 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, 
random_state=42) 
 
# Create an MLP classifier 
# You can customise the architecture by adjusting the hidden_layer_sizes, 
activation, and other hyperparameters. 
mlp = MLPClassifier(hidden_layer_sizes=(10, 10), activation='relu', 
max_iter=1000, random_state=42) 
 
# Fit the classifier to the training data 
mlp.fit(X_train, y_train) 
 
# Make predictions on the testing data 
y_pred = mlp.predict(X_test) 
 
# Evaluate the classifier's performance 
accuracy = accuracy_score(y_test, y_pred) 
report = classification_report(y_test, y_pred, target_names=data.target_names) 
 
print("Accuracy:", accuracy) 
print("Classification Report:\n", report) 

Implement a Ridge 
regression model for 

regression tasks. 

Ridge regression is a linear regression technique used for regression tasks, especially 
when dealing with multicollinearity in the data. Here's how to implement Ridge 
regression using scikit-learn in Python: 
from sklearn.datasets import load_boston 
from sklearn.model_selection import train_test_split 
from sklearn.linear_model import Ridge 
from sklearn.metrics import mean_squared_error, r2_score 
 
# Load the dataset (Boston Housing dataset as an example) 
data = load_boston() 
X = data.data 
y = data.target 
 
# Split the data into training and testing sets 
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, 
random_state=42) 
 
# Create a Ridge regression model 
alpha = 1.0  # Regularisation strength (adjust as needed) 
ridge = Ridge(alpha=alpha) 
 
# Fit the model to the training data 
ridge.fit(X_train, y_train) 
 
# Make predictions on the testing data 
y_pred = ridge.predict(X_test) 
 
# Evaluate the model's performance 
mse = mean_squared_error(y_test, y_pred) 
r2 = r2_score(y_test, y_pred) 
 
print("Mean Squared Error:", mse) 
print("R-squared (R2) Score:", r2) 

How do you perform 
model stacking using 

scikit-learn? 

Model stacking, also known as stacked generalisation, is an ensemble machine 
learning technique that combines the predictions of multiple models to improve 
overall predictive performance. Scikit-learn doesn't have native support for model 



 

 

stacking, but you can implement it manually. Here's a general outline of how to 
perform model stacking using scikit-learn and Python: 

1. Create a Diverse Set of Base Models: 
a. Select a set of diverse base models, which can be classifiers, 

regressors, or any other machine learning algorithms. 
b. Train each base model on your training data. 

2. Generate Predictions from Base Models: 
a. Use the trained base models to make predictions on the validation 

and/or test datasets. 
3. Combine Base Models' Predictions: 

a. Create a new dataset that consists of the predictions made by each 
base model for the validation or test data. 

4. Train a Meta-Model: 
a. Choose a meta-model (a model that takes the predictions from the 

base models as input) and train it using the new dataset created in 
the previous step. 

b. This meta-model learns to make the final predictions based on the 
outputs of the base models. 

5. Stacking in Practice: 
a. You can implement the stacking process using NumPy or pandas 

to handle the data manipulation. 
b. You can also use scikit-learn to create a meta-model and stack the 

predictions. 
c. Ensure that the validation process avoids data leakage. For 

example, use k-fold cross-validation to prevent the meta-model 
from seeing the same data used in training the base models. 

Here's a simplified example of model stacking using scikit-learn for a binary 
classification task: 
from sklearn.datasets import load_iris 
from sklearn.model_selection import train_test_split 
from sklearn.ensemble import RandomForestClassifier 
from sklearn.linear_model import LogisticRegression 
from sklearn.metrics import accuracy_score 
 
# Load the dataset (Iris dataset as an example) 
data = load_iris() 
X = data.data 
y = (data.target == 2).astype(int)  # Binary classification, 1 if class 2, 0 otherwise 
 
# Split the data into training and testing sets 
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, 
random_state=42) 
 
# Create two base models 
base_model_1 = RandomForestClassifier(n_estimators=100, random_state=42) 
base_model_2 = LogisticRegression(random_state=42) 
 
# Train the base models 
base_model_1.fit(X_train, y_train) 
base_model_2.fit(X_train, y_train) 
 
# Generate predictions from the base models 
preds_base_1 = base_model_1.predict(X_test) 
preds_base_2 = base_model_2.predict(X_test) 
 
# Combine base models' predictions 
stacked_X = np.column_stack((preds_base_1, preds_base_2)) 
 



 

 

# Train a meta-model (e.g., Logistic Regression) on the stacked data 
meta_model = LogisticRegression() 
meta_model.fit(stacked_X, y_test) 
 
# Make predictions with the meta-model 
stacked_preds = meta_model.predict(stacked_X) 
 
# Evaluate the stacked model's performance 
stacked_accuracy = accuracy_score(y_test, stacked_preds) 
print("Stacked Model Accuracy:", stacked_accuracy) 

Write code to perform 
text classification 

using TF-IDF vectors. 

Text classification using TF-IDF (Term Frequency-Inverse Document Frequency) 
vectors is a common technique in natural language processing. Scikit-learn provides 
a straightforward way to perform text classification using TF-IDF vectors. Here's an 
example for binary text classification: 
from sklearn.feature_extraction.text import TfidfVectorizer 
from sklearn.model_selection import train_test_split 
from sklearn.naive_bayes import MultinomialNB 
from sklearn.metrics import accuracy_score, classification_report 
 
# Sample text data for binary classification 
corpus = [ 
    "This is a positive document", 
    "Another positive example", 
    "Negative sentiment in this text", 
    "Not a good review", 
    "This is negative", 
] 
 
labels = [1, 1, 0, 0, 0]  # 1 for positive, 0 for negative 
 
# Create a TF-IDF vectorizer 
tfidf_vectorizer = TfidfVectorizer() 
 
# Transform the text data into TF-IDF vectors 
X = tfidf_vectorizer.fit_transform(corpus) 
 
# Split the data into training and testing sets 
X_train, X_test, y_train, y_test = train_test_split(X, labels, test_size=0.2, 
random_state=42) 
 
# Create a classifier (e.g., Multinomial Naive Bayes) 
classifier = MultinomialNB() 
 
# Fit the classifier to the training data 
classifier.fit(X_train, y_train) 
 
# Make predictions on the testing data 
y_pred = classifier.predict(X_test) 
 
# Evaluate the classifier's performance 
accuracy = accuracy_score(y_test, y_pred) 
report = classification_report(y_test, y_pred, target_names=["Negative", 
"Positive"]) 
 
print("Accuracy:", accuracy) 
print("Classification Report:\n", report) 



 

 

Create a custom 
transformer for data 

preprocessing. 

Creating a custom transformer for data preprocessing in scikit-learn is a powerful 
way to encapsulate data transformations and make your data preprocessing pipeline 
more modular and maintainable. You can create custom transformers by subclassing 
the TransformerMixin class from scikit-learn and implementing the fit and transform 
methods. Here's an example of creating a custom transformer to perform z-score 
scaling (standardisation) on a dataset: 
from sklearn.base import BaseEstimator, TransformerMixin 
from sklearn.preprocessing import StandardScaler 
 
class ZScoreScaler(BaseEstimator, TransformerMixin): 
    def __init__(self): 
        self.scaler = StandardScaler() 
 
    def fit(self, X, y=None): 
        # Fit the scaler on the input data 
        self.scaler.fit(X) 
        return self 
 
    def transform(self, X): 
        # Transform the input data using the fitted scaler 
        return self.scaler.transform(X) 
Now you can use this custom transformer as part of your scikit-learn pipeline for data 
preprocessing. For example: 
from sklearn.pipeline import Pipeline 
 
# Sample data 
X = [[1, 2], [3, 4], [5, 6]] 
 
# Create a data preprocessing pipeline with the custom transformer 
preprocessing_pipeline = Pipeline([ 
    ('z_score_scaler', ZScoreScaler()) 
]) 
 
# Fit and transform the data 
X_transformed = preprocessing_pipeline.fit_transform(X) 

Implement a Gaussian 
Mixture Model 

(GMM) for clustering. 

A Gaussian Mixture Model (GMM) is a probabilistic model that represents a mixture 
of Gaussian distributions. GMMs are often used for clustering, where each Gaussian 
component represents one cluster. You can implement a GMM for clustering using 
scikit-learn. Here's an example: 
from sklearn.mixture import GaussianMixture 
import numpy as np 
import matplotlib.pyplot as plt 
 
# Create synthetic data 
np.random.seed(0) 
n_samples = 300 
X = np.concatenate((np.random.randn(n_samples, 2), 5 + 
np.random.randn(n_samples, 2))) 
 
# Create and fit a GMM model 
n_components = 2 
gmm = GaussianMixture(n_components=n_components, random_state=0) 
gmm.fit(X) 
 
# Predict cluster labels for each data point 
labels = gmm.predict(X) 
 
# Get the means and covariances of the Gaussian components 



 

 

means = gmm.means_ 
covariances = gmm.covariances_ 
 
# Visualise the data and clustering results 
plt.scatter(X[:, 0], X[:, 1], c=labels, s=40, cmap='viridis') 
plt.scatter(means[:, 0], means[:, 1], s=200, c='red', marker='X', label='Cluster 
Centers') 
plt.legend() 
plt.title('GMM Clustering') 
plt.show() 

How can you handle 
imbalanced classes in a 

multi-class 
classification problem? 

Handling imbalanced classes in a multi-class classification problem is important to 
ensure that the model doesn't become biassed towards the majority class. Several 
techniques can be applied to address class imbalance in multi-class classification. 
Here are some strategies: 

1. Resampling Techniques: 
a. Oversampling: Increase the number of instances in the minority 

classes by duplicating or generating synthetic examples. Methods 
like SMOTE (Synthetic Minority Over-sampling Technique) can 
be applied to create synthetic examples. 

b. Undersampling: Reduce the number of instances in the majority 
class by randomly removing examples. Be cautious not to remove 
too much data, as this may lead to a loss of information. 

2. Cost-Sensitive Learning: 
a. Assign different misclassification costs to different classes. This 

can be done by setting class weights in the learning algorithm. 
Many classifiers in scikit-learn support setting class weights. 

3. Ensemble Methods: 
a. Use ensemble techniques such as Balanced Random Forest or 

EasyEnsemble that combine multiple models to balance the class 
distribution while making predictions. 

4. Anomaly Detection: 
a. Treat the minority class as an anomaly detection problem, where 

you model the majority class and classify instances from the 
minority class as anomalies. 

5. Data Augmentation: 
a. Augment the data in the minority classes by applying techniques 

like text augmentation for natural language processing tasks. This 
can help generate additional training data. 

6. Transfer Learning: 
a. Utilise pre-trained models or features from related tasks or 

domains. Transfer learning can help when there is limited data in 
minority classes. 

7. Re-sampling with Clustering: 
a. Apply clustering techniques to identify clusters within the majority 

class and then perform resampling techniques within each cluster. 
This can help preserve diversity within the majority class. 

8. Evaluation Metrics: 
a. Choose appropriate evaluation metrics that are not biassed towards 

the majority class. Metrics like F1-score, precision-recall curves, 
or area under the precision-recall curve (AUC-PR) are often better 
for imbalanced multiclass problems. 

9. Modify Decision Thresholds: 
a. Adjust the decision threshold of the classifier to improve the 

balance between precision and recall. This can help find a more 
suitable trade-off. 

10. Algorithm Selection: 
a. Consider using algorithms specifically designed to handle class 



 

 

imbalance, like cost-sensitive algorithms or ensemble methods 
designed for imbalanced data. 

The choice of which strategy to apply depends on the specific characteristics of your 
multi-class classification problem. It's often necessary to experiment with different 
techniques and evaluate their performance using appropriate metrics to determine the 
most effective approach. 

Write code to perform 
stratified sampling for 

dataset splitting. 

Stratified sampling is a technique used to ensure that the class distribution in the 
training and testing sets remains representative of the original dataset. In scikit-learn, 
you can perform stratified sampling using the train_test_split function with the 
stratify parameter set to the target variable. Here's an example: 
from sklearn.datasets import load_iris 
from sklearn.model_selection import train_test_split 
 
# Load the dataset (Iris dataset as an example) 
data = load_iris() 
X = data.data 
y = data.target 
 
# Perform stratified sampling 
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, stratify=y, 
random_state=42) 
 
# Print the class distribution in the training and testing sets 
from collections import Counter 
 
train_class_distribution = Counter(y_train) 
test_class_distribution = Counter(y_test) 
 
print("Class distribution in the training set:", train_class_distribution) 
print("Class distribution in the testing set:", test_class_distribution) 

Build a Recurrent 
Neural Network 

(RNN) using scikit-
learn. 

Scikit-learn is primarily focused on traditional machine learning models and doesn't 
provide built-in support for recurrent neural networks (RNNs). For building RNNs 
and more complex neural networks, you should consider using deep learning 
frameworks like TensorFlow or PyTorch. 
Here's a basic example of building a simple RNN using TensorFlow: 
import tensorflow as tf 
from tensorflow.keras.layers import SimpleRNN, Dense 
from tensorflow.keras.models import Sequential 
import numpy as np 
 
# Sample data 
X = np.random.random((100, 10, 1))  # 100 sequences of length 10, with 1 feature 
y = np.random.randint(0, 2, size=(100,)) 
 
# Create a Sequential model 
model = Sequential() 
 
# Add an RNN layer with 32 units 
model.add(SimpleRNN(32, input_shape=(10, 1))) 
 
# Add a Dense layer for binary classification 
model.add(Dense(1, activation='sigmoid')) 
 
# Compile the model 
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) 
 
# Fit the model to the data 



 

 

model.fit(X, y, epochs=10, batch_size=32) 

Implement a Lasso 
regression model for 

feature selection. 

Lasso regression is a linear regression technique that includes L1 regularisation, 
which can be used for feature selection by encouraging some feature coefficients to 
be exactly zero. You can implement Lasso regression using scikit-learn to perform 
feature selection. Here's an example: 
from sklearn.datasets import load_boston 
from sklearn.model_selection import train_test_split 
from sklearn.linear_model import Lasso 
from sklearn.metrics import mean_squared_error, r2_score 
 
# Load the dataset (Boston Housing dataset as an example) 
data = load_boston() 
X = data.data 
y = data.target 
 
# Split the data into training and testing sets 
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, 
random_state=42) 
 
# Create a Lasso regression model 
alpha = 1.0  # Regularisation strength (adjust as needed) 
lasso = Lasso(alpha=alpha) 
 
# Fit the model to the training data 
lasso.fit(X_train, y_train) 
 
# Make predictions on the testing data 
y_pred = lasso.predict(X_test) 
 
# Evaluate the model's performance 
mse = mean_squared_error(y_test, y_pred) 
r2 = r2_score(y_test, y_pred) 
 
print("Mean Squared Error:", mse) 
print("R-squared (R2) Score:", r2) 

How do you handle 
time-dependent 

features in machine 
learning? 

Handling time-dependent features in machine learning is essential when working 
with data where time plays a crucial role, such as time series data or event data. Here 
are some strategies for dealing with time-dependent features: 

1. Lag Features: 
a. Create lag features by shifting the values of the feature in time. 

This can be particularly useful for time series forecasting or 
prediction tasks where past values of a feature are important. 

2. Rolling Statistics: 
a. Compute rolling statistics like moving averages, standard 

deviations, or other aggregation functions over a window of time. 
This can help capture trends and seasonality in the data. 

3. Time-Based Features: 
a. Extract features from the timestamp, such as day of the week, 

month, year, or time of day. These features can capture periodic 
behaviour and seasonality. 

4. Time Since Events: 
a. Calculate the time elapsed since specific events or occurrences. 

This can be valuable in event-driven analysis. 
5. Time Decay: 

a. Apply time decay to features, giving more weight to recent data 



 

 

and less to older data. This is useful when older data becomes less 
relevant over time. 

6. Resampling: 
a. Resample time-dependent data to different time frequencies, 

aggregating or interpolating values as needed. This is often used 
when merging data from different sources with varying time 
resolutions. 

7. Feature Engineering: 
a. Engineer domain-specific features that account for the temporal 

nature of the data. For example, in finance, you might create 
features like moving averages, volatility, or momentum. 

8. Windowed Features: 
a. Create features based on windows or time intervals. For example, 

you could compute statistics for the last 7 days or the next 3 hours. 
9. Cross-Validation: 

a. Use time-based cross-validation techniques, like time series cross-
validation, to ensure that your model doesn't train on future data 
when predicting past events. 

10. Feature Selection: 
a. Use feature selection techniques to identify the most relevant time-

dependent features for your specific task. Features with low 
importance can be pruned to reduce model complexity. 

11. Model Selection: 
a. Choose models that are well-suited for time-dependent data, such 

as autoregressive models, recurrent neural networks (RNNs), or 
gradient boosting models. These models can capture temporal 
dependencies. 

12. Ensemble Learning: 
a. Combine predictions from different models or different time 

intervals to improve overall performance. This can be useful for 
tasks like time series forecasting. 

13. Regularisation: 
a. Apply regularisation techniques to control model complexity, 

especially when working with high-dimensional time-dependent 
data. L1 regularisation can help with feature selection. 

14. Data Preprocessing: 
a. Ensure your data is properly preprocessed for time-dependent 

tasks, such as handling missing values, scaling, and encoding 
categorical features. 

Handling time-dependent features effectively requires a deep understanding of the 
data, the problem domain, and the specific requirements of the machine learning task. 
It often involves a combination of feature engineering, model selection, and domain 
expertise to make informed decisions. 

Write code to apply 
feature scaling to a 

subset of columns in a 
DataFrame. 

You can apply feature scaling to a subset of columns in a DataFrame using libraries 
like pandas and scikit-learn. Here's an example of how to do it: 
import pandas as pd 
from sklearn.preprocessing import StandardScaler 
 
# Sample DataFrame 
data = { 
    'Feature1': [10, 20, 30, 40, 50], 
    'Feature2': [0.1, 0.2, 0.3, 0.4, 0.5], 
    'Feature3': [5, 10, 15, 20, 25] 
} 
 
df = pd.DataFrame(data) 
 



 

 

# Columns to be scaled 
columns_to_scale = ['Feature1', 'Feature2'] 
 
# Create a StandardScaler 
scaler = StandardScaler() 
 
# Fit and transform the selected columns 
df[columns_to_scale] = scaler.fit_transform(df[columns_to_scale]) 
 
# Print the scaled DataFrame 
print(df) 

Create a custom 
scoring metric for 
model evaluation. 

Creating a custom scoring metric for model evaluation in scikit-learn can be done by 
defining a Python function that computes the metric you want to use. You can then 
use this custom metric when cross-validating or evaluating your models. Here's an 
example of how to create a custom scoring metric: 
Suppose you want to create a custom scoring metric called "custom_metric" for a 
classification problem that takes the true labels y_true and predicted labels y_pred as 
input. This metric calculates the F1-score for a specific class (e.g., class 1) while 
ignoring other classes. 
from sklearn.metrics import make_scorer 
from sklearn.metrics import f1_score 
 
def custom_metric(y_true, y_pred): 
    # Calculate F1-score for class 1 (positive class) while ignoring other classes 
    f1 = f1_score(y_true, y_pred, labels=[1], average='micro') 
    return f1 
 
# Create a custom scorer based on the custom metric 
custom_scorer = make_scorer(custom_metric) 
 
# Now you can use custom_scorer in model evaluation 

Implement an Isolation 
Forest for anomaly 

detection. 

Isolation Forest is an anomaly detection algorithm that's effective for identifying 
outliers or anomalies in a dataset. Scikit-learn provides an implementation of 
Isolation Forest that you can use for anomaly detection. Here's an example of how to 
implement and use Isolation Forest: 
from sklearn.ensemble import IsolationForest 
import numpy as np 
 
# Create a sample dataset (2D data for simplicity) 
np.random.seed(0) 
X = 0.3 * np.random.randn(100, 2) 
X = np.r_[X, 2 + 0.3 * np.random.randn(10, 2)]  # Add some anomalies 
 
# Create and fit an Isolation Forest model 
clf = IsolationForest(contamination=0.1, random_state=42) 
clf.fit(X) 
 
# Predict outliers (anomalies) 
y_pred = clf.predict(X) 
 
# Anomalies are labelled as -1, while inliers are labelled as 1 
# You can convert the labels to boolean values (True for inliers, False for 
anomalies) 
is_inlier = y_pred == 1 
 
# Print the results 
print("Anomaly predictions (1 for inliers, -1 for anomalies):") 



 

 

print(y_pred) 
print("Is inlier (True for inliers, False for anomalies):") 
print(is_inlier) 

How can you perform 
oversampling of 

minority classes in 
imbalanced datasets? 

Oversampling is a technique used to address class imbalance in datasets by increasing 
the number of instances in the minority class. This helps the model learn the minority 
class more effectively. There are various oversampling methods available. Here's 
how you can perform oversampling of the minority class in imbalanced datasets: 

1. Random Oversampling: 
a. Randomly select instances from the minority class with 

replacement to increase their frequency. 
2. SMOTE (Synthetic Minority Over-sampling Technique): 

a. Generate synthetic examples for the minority class by interpolating 
between existing instances. SMOTE creates new samples by 
selecting a minority class instance and its k-nearest neighbours and 
then creating synthetic samples along the line segments connecting 
them. 

3. ADASYN (Adaptive Synthetic Sampling): 
a. ADASYN is an extension of SMOTE that adaptively generates 

synthetic samples based on the density distribution of minority 
class instances. It generates more synthetic samples in regions of 
lower density. 

4. Borderline-SMOTE: 
a. A variant of SMOTE that focuses on borderline instances—those 

minority class instances that are near the decision boundary. It 
creates synthetic samples for these borderline cases. 

5. SMOTE-NC (SMOTE for Nominal and Continuous Features): 
a. An extension of SMOTE that works with datasets containing both 

categorical and numerical features. It adapts the synthetic sample 
generation process for both types of features. 

6. Random Oversampling with Replacement: 
a. This method randomly selects instances from the minority class 

and duplicates them to balance the class distribution. 
Here's an example of using the RandomOverSampler from the imbalanced-learn 
library, which is an extension of scikit-learn specifically designed for addressing 
class imbalance: 
from imblearn.over_sampling import RandomOverSampler 
from collections import Counter 
 
# Sample data 
X, y = X_train, y_train  # Replace with your own data 
 
# Initial class distribution 
print("Class distribution before oversampling:", Counter(y)) 
 
# Apply random oversampling 
oversampler = RandomOverSampler(sampling_strategy='auto', random_state=42) 
X_resampled, y_resampled = oversampler.fit_resample(X, y) 
 
# New class distribution after oversampling 
print("Class distribution after oversampling:", Counter(y_resampled)) 

Write code to calculate 
the Kullback-Leibler 
divergence between 

two probability 
distributions. 

You can calculate the Kullback-Leibler (KL) divergence between two probability 
distributions in Python using various libraries, such as NumPy. Here's an example of 
how to compute the KL divergence: 
import numpy as np 
 
# Define two probability distributions (as NumPy arrays) 
p = np.array([0.2, 0.4, 0.4]) 



 

 

q = np.array([0.3, 0.3, 0.4]) 
 
# Ensure that the distributions sum to 1 
p = p / p.sum() 
q = q / q.sum() 
 
# Calculate the KL divergence 
kl_divergence = np.sum(p * np.log(p / q)) 
 
# Alternatively, you can use scipy's entropy function to calculate the KL divergence 
from scipy.stats import entropy 
kl_divergence_scipy = entropy(p, q) 
 
print("KL Divergence (numpy):", kl_divergence) 
print("KL Divergence (scipy):", kl_divergence_scipy) 

Build a stacked 
ensemble model using 

multiple base 
classifiers. 

Building a stacked ensemble model involves training multiple base classifiers and 
then combining their predictions using a meta-learner. This ensemble technique can 
improve predictive performance. Here's an example of how to build a stacked 
ensemble model using scikit-learn: 
from sklearn.datasets import load_iris 
from sklearn.model_selection import train_test_split 
from sklearn.ensemble import StackingClassifier, RandomForestClassifier, 
GradientBoostingClassifier 
from sklearn.linear_model import LogisticRegression 
 
# Load a dataset (Iris dataset as an example) 
data = load_iris() 
X = data.data 
y = data.target 
 
# Split the data into training and testing sets 
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, 
random_state=42) 
 
# Define base classifiers 
base_classifiers = [ 
    ('rf', RandomForestClassifier(n_estimators=100, random_state=42)), 
    ('gb', GradientBoostingClassifier(n_estimators=100, random_state=42)) 
] 
 
# Define the meta-learner 
meta_learner = LogisticRegression() 
 
# Create the stacked ensemble model 
stacked_model = StackingClassifier(estimators=base_classifiers, 
final_estimator=meta_learner) 
 
# Train the stacked model on the training data 
stacked_model.fit(X_train, y_train) 
 
# Make predictions on the testing data 
y_pred = stacked_model.predict(X_test) 
 
# Evaluate the stacked ensemble model 
from sklearn.metrics import accuracy_score 
 
accuracy = accuracy_score(y_test, y_pred) 
print("Accuracy of the stacked ensemble model:", accuracy) 



 

 

Implement a t-SNE 
visualisation of high-

dimensional data. 

t-Distributed Stochastic Neighbour Embedding (t-SNE) is a dimensionality reduction 
technique commonly used for visualising high-dimensional data in lower dimensions. 
Here's an example of how to implement a t-SNE visualisation of high-dimensional 
data using scikit-learn and matplotlib: 
import numpy as np 
import matplotlib.pyplot as plt 
from sklearn.manifold import TSNE 
from sklearn.datasets import load_iris 
 
# Load a high-dimensional dataset (Iris dataset as an example) 
data = load_iris() 
X = data.data 
y = data.target 
 
# Apply t-SNE for dimensionality reduction 
tsne = TSNE(n_components=2, random_state=42) 
X_tsne = tsne.fit_transform(X) 
 
# Create a scatter plot to visualise the reduced data 
plt.figure(figsize=(8, 6)) 
plt.scatter(X_tsne[:, 0], X_tsne[:, 1], c=y, cmap='viridis', s=50) 
plt.title("t-SNE Visualization") 
plt.xlabel("Dimension 1") 
plt.ylabel("Dimension 2") 
plt.show() 

How do you perform 
automatic feature 
selection using 

Recursive Feature 
Elimination (RFE)? 

Recursive Feature Elimination (RFE) is a technique used for automatic feature 
selection in machine learning. It recursively fits the model with different subsets of 
features and selects the best-performing subset. scikit-learn provides the RFE class 
to implement this feature selection method. Here's how to perform automatic feature 
selection using RFE: 
from sklearn.datasets import load_iris 
from sklearn.feature_selection import RFE 
from sklearn.linear_model import LogisticRegression 
 
# Load a dataset (Iris dataset as an example) 
data = load_iris() 
X = data.data 
y = data.target 
 
# Create a base model (e.g., Logistic Regression) 
model = LogisticRegression(solver='lbfgs') 
 
# Create an RFE model 
n_features_to_select = 2  # Number of features to select 
rfe = RFE(model, n_features_to_select) 
 
# Fit the RFE model to the data 
rfe.fit(X, y) 
 
# Get the selected features 
selected_features = rfe.support_ 
ranking = rfe.ranking_ 
 
# Print the results 
print("Selected Features:", selected_features) 
print("Feature Ranking:", ranking) 



 

 

Write code to apply 
quantile transformation 

to a dataset. 

Quantile transformation is a technique used to map the data to a uniform or Gaussian 
distribution. Scikit-learn provides a QuantileTransformer class that you can use to 
apply quantile transformation to a dataset. Here's how to do it: 
from sklearn.datasets import load_iris 
from sklearn.preprocessing import QuantileTransformer 
 
# Load a dataset (Iris dataset as an example) 
data = load_iris() 
X = data.data 
 
# Create a QuantileTransformer 
quantile_transformer = QuantileTransformer(output_distribution='normal', 
random_state=42) 
 
# Fit and transform the data 
X_transformed = quantile_transformer.fit_transform(X) 
 
# Print the transformed data 
print("Original Data:") 
print(X[:5]) 
print("\nTransformed Data:") 
print(X_transformed[:5]) 

Implement a deep 
learning model CNN 

for malware 
classification. The 
dataset is called 

Spy.csv and it has 
9503 columns in total 
where the last one is 

the label. Skip the first 
row 

import pandas as pd 
import numpy as np 
from sklearn.model_selection import train_test_split 
from sklearn.preprocessing import LabelEncoder 
from tensorflow import keras 
from tensorflow.keras.models import Sequential 
from tensorflow.keras.layers import Conv1D, MaxPooling1D, Flatten, Dense 
from tensorflow.keras.utils import to_categorical 
 
# Load the dataset and skip the first row 
data = pd.read_csv('Spy.csv', skiprows=[0]) 
X = data.iloc[:, :-1].values 
y = data.iloc[:, -1].values 
 
# Encode the labels 
label_encoder = LabelEncoder() 
y = label_encoder.fit_transform(y) 
 
# Split the data into training and testing sets 
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, 
random_state=42) 
 
# Reshape the data for Conv1D input (assuming each row represents a sequence) 
input_shape = (X.shape[1], 1) 
X_train = X_train.reshape(X_train.shape[0], X.shape[1], 1) 
X_test = X_test.reshape(X_test.shape[0], X.shape[1], 1) 
 
# Create a CNN model 
model = Sequential() 
model.add(Conv1D(filters=64, kernel_size=3, activation='relu', 
input_shape=input_shape)) 
model.add(MaxPooling1D(pool_size=2)) 
model.add(Flatten()) 
model.add(Dense(64, activation='relu')) 
model.add(Dense(1, activation='sigmoid')) 
 



 

 

# Compile the model 
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) 
 
# Train the model 
model.fit(X_train, y_train, epochs=10, batch_size=32, validation_data=(X_test, 
y_test)) 
 
# Evaluate the model 
loss, accuracy = model.evaluate(X_test, y_test) 
print(f"Test Loss: {loss:.4f}") 
print(f"Test Accuracy: {accuracy * 100:.2f}%") 

Implement a deep 
learning model LSTM 

for malware 
classification. The 
dataset is called 

Spy.csv and it has 
9503 columns in total 
where the last one is 

the label. Skip the first 
row 

import pandas as pd 
import numpy as np 
from sklearn.model_selection import train_test_split 
from sklearn.preprocessing import LabelEncoder 
from tensorflow import keras 
from tensorflow.keras.models import Sequential 
from tensorflow.keras.layers import LSTM, Dense, Embedding 
from tensorflow.keras.preprocessing.sequence import pad_sequences 
from tensorflow.keras.utils import to_categorical 
 
# Load the dataset and skip the first row 
data = pd.read_csv('Spy.csv', skiprows=[0]) 
X = data.iloc[:, :-1].values 
y = data.iloc[:, -1].values 
 
# Encode the labels 
label_encoder = LabelEncoder() 
y = label_encoder.fit_transform(y) 
 
# Split the data into training and testing sets 
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, 
random_state=42) 
 
# Preprocess the data for LSTM input 
max_sequence_length = 100  # Set an appropriate sequence length 
X_train = pad_sequences(X_train, maxlen=max_sequence_length) 
X_test = pad_sequences(X_test, maxlen=max_sequence_length) 
 
# Create an LSTM model 
model = Sequential() 
model.add(Embedding(input_dim=X_train.max() + 1, output_dim=128, 
input_length=max_sequence_length)) 
model.add(LSTM(64, return_sequences=True)) 
model.add(LSTM(32)) 
model.add(Dense(1, activation='sigmoid')) 
 
# Compile the model 
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) 
 
# Train the model 
model.fit(X_train, y_train, epochs=10, batch_size=32, validation_data=(X_test, 
y_test)) 
 
# Evaluate the model 
loss, accuracy = model.evaluate(X_test, y_test) 
print(f"Test Loss: {loss:.4f}") 
print(f"Test Accuracy: {accuracy * 100:.2f}%") 



 

 

Build a multi-layer 
perceptron (MLP) 
neural network for 

malware classification. 
The dataset is called 
Spy.csv and it has 

9503 columns in total 
where the last one is 

the label. Skip the first 
row 

import pandas as pd 
import numpy as np 
from sklearn.model_selection import train_test_split 
from sklearn.preprocessing import LabelEncoder 
from tensorflow import keras 
from tensorflow.keras.models import Sequential 
from tensorflow.keras.layers import Dense 
 
# Load the dataset and skip the first row 
data = pd.read_csv('Spy.csv', skiprows=[0]) 
X = data.iloc[:, :-1].values 
y = data.iloc[:, -1].values 
 
# Encode the labels 
label_encoder = LabelEncoder() 
y = label_encoder.fit_transform(y) 
 
# Split the data into training and testing sets 
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, 
random_state=42) 
 
# Create an MLP model 
model = Sequential() 
model.add(Dense(128, input_dim=X_train.shape[1], activation='relu')) 
model.add(Dense(64, activation='relu')) 
model.add(Dense(1, activation='sigmoid')) 
 
# Compile the model 
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) 
 
# Train the model 
model.fit(X_train, y_train, epochs=10, batch_size=32, validation_data=(X_test, 
y_test)) 
 
# Evaluate the model 
loss, accuracy = model.evaluate(X_test, y_test) 
print(f"Test Loss: {loss:.4f}") 
print(f"Test Accuracy: {accuracy * 100:.2f}%") 

 
 


